

# Axial Piston Fixed Pump A2FO

RE 91401/06.2012

1/34

Replaces: 03.08

### **Data sheet**

Series 6 Size 5 10 to 200 250 to 1000 Open circuit

Nominal pressure/Maximum pressure

315/350 bar 400/450 bar 350/400 bar



### **Contents**

| Ordering code for standard program | 2  |
|------------------------------------|----|
| Technical data                     | 4  |
| Dimensions size 5                  | 11 |
| Dimensions sizes 10, 12, 16        | 12 |
| Dimensions sizes 23, 28, 32        | 14 |
| Dimensions size 45                 | 16 |
| Dimensions sizes 56, 63            | 18 |
| Dimensions sizes 80, 90            | 20 |
| Dimensions sizes 107, 125          | 22 |
| Dimensions sizes 160, 180          | 24 |
| Dimensions size 200                | 26 |
| Dimensions size 250                | 27 |
| Dimensions size 355                | 28 |
| Dimensions size 500                | 29 |
| Dimensions size 710                | 30 |
| Dimensions size 1000               | 31 |
| Installation instructions          | 32 |
| General instructions               | 34 |

#### eatures

- Fixed pump with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in an open circuit
- For use in mobile and stationary applications
- The flow is proportional to the drive speed and displacement
- The drive shaft bearings are designed for the bearing service life requirements usually encountered in these areas
- High power density
- Small dimensions
- High total efficiency
- Economical design
- One-piece tapered piston with piston rings for sealing

# Ordering code for standard program

|    | A2F |    | 0  |    | / | 6  |    |    | ı | ٧  |    |    |    |    |
|----|-----|----|----|----|---|----|----|----|---|----|----|----|----|----|
| 01 | 02  | 03 | 04 | 05 |   | 06 | 07 | 08 |   | 09 | 10 | 11 | 12 | 13 |

| Hydrau | ıı | <br>uic |
|--------|----|---------|
| ,      |    | <br>    |

|    | Mineral oil and HFD. HFD for sizes 2 | 250 to 1000 only in combination with long-life bearings "L" (without code) |    |
|----|--------------------------------------|----------------------------------------------------------------------------|----|
| 01 | HFB, HFC hydraulic fluid             | Sizes 5 to 200 (without code)                                              |    |
|    |                                      | Sizes 250 to 1000 (only in combination with long-life bearings "L")        | E- |

### Axial piston unit

| 02 | Bent-axis design, fixed | A2F | ١ |
|----|-------------------------|-----|---|
|----|-------------------------|-----|---|

|    | Drive shaft bearing             | 5 to 200 | 250 to 500 | 710 to 1000 |   |
|----|---------------------------------|----------|------------|-------------|---|
| 03 | Standard bearing (without code) | •        | •          | -           |   |
| 03 | Long-life bearing               | _        | •          | •           | L |

### Operating mode

| 04 | 4 Pump, open circuit | 0 | ĺ |
|----|----------------------|---|---|
|    |                      |   |   |

### Sizes (NG)

|    | Geometric displa | acen | nent, | see | table | e of v | /alue | s on | pag | e 7 |    |    |    |     |     |     |     |     |     |     |     |     |      |
|----|------------------|------|-------|-----|-------|--------|-------|------|-----|-----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 05 |                  | 5    | 10    | 12  | 16    | 23     | 28    | 32   | 45  | 56  | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 |

### **Series**

| 06 | 6 | 1 |
|----|---|---|
|    |   |   |

### Index

|    | NG10 to 180         | 1 |
|----|---------------------|---|
| 07 | NG200               | 3 |
|    | NG5 and 250 to 1000 | 0 |

### **Directions of rotation**

09 FKM (fluor-caoutchouc)

| 08 | Viewed on drive shaft | clockwise         | R |
|----|-----------------------|-------------------|---|
| 00 |                       | counter-clockwise | L |

#### Seals

|    | Drive shafts                | 5 | 10 | 12 | 16 | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 to 1000 |   |
|----|-----------------------------|---|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-------------|---|
|    | Splined shaft               | - | •  | •  | •  | •  | •  | •  | -  | •  | •  | •  | •  | •   | •   | •   | •   | •   | _           | Α |
|    | DIN 5480                    | - | •  | •  | -  | •  | •  | -  | •  | •  | -  | •  | -  | •   | -   | •   | -   | -   | •           | Z |
| 10 | ,                           | • | •  | •  | •  | •  | •  | •  | -  | •  | •  | •  | •  | •   | •   | •   | •   | •   | -           | В |
|    | DIN 6885                    | - | •  | •  | -  | •  | •  | -  | •  | •  | -  | •  | _  | •   | -   | •   | -   | -   | •           | Р |
|    | Conical shaft <sup>1)</sup> |   |    |    | _  | _  |    |    |    | _  | _  | _  | _  | _   | _   | _   |     | _   | _           | C |

|    | Mounting flange | es     | 5 to 250 | 355 to 1000 |   |
|----|-----------------|--------|----------|-------------|---|
| 44 | ISO 3019-2      | 4-hole | •        | _           | В |
| 11 |                 | 8-hole | _        | •           | Н |

<sup>1)</sup> Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.

# Ordering code for standard program

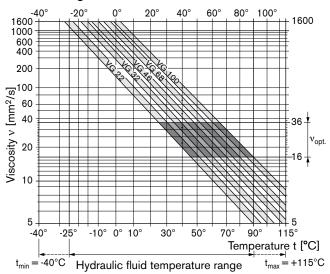
|    | A2F |    | 0  |    | / | 6  |    |    | - | V  |    |    |    |    |
|----|-----|----|----|----|---|----|----|----|---|----|----|----|----|----|
| 01 | 02  | 03 | 04 | 05 |   | 06 | 07 | 08 |   | 09 | 10 | 11 | 12 | 13 |

|    | Port plates for service lines <sup>2)</sup>               | 5 | 10 to 16 | 23 to 250 | 355 to 1000 |    |
|----|-----------------------------------------------------------|---|----------|-----------|-------------|----|
|    | SAE flange port A/B at side and SAE flange port S at rear | _ | _        | •         | -           | 05 |
| 12 | Threaded port A/B at side and threaded port S at rear     | - | •        | -         | _           | 06 |
|    | SAE flange ports A/B and S at rear                        | - | -        | -         | •           | 11 |
|    | Threaded ports A/B and S at side                          | • | -        | -         | _           | 07 |

### Standard / special version

|    | Standard version (without code)                                                            |    |
|----|--------------------------------------------------------------------------------------------|----|
| 13 | Standard version with installation variants, e. g. T ports against standard open or closed | -Y |
|    | Special version                                                                            | -S |

ullet = Available  $\bigcirc$  = On request - = Not available  $\bigcirc$  = Preferred program


### Technical data

### Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed pump A2FO is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

#### Selection diagram



#### Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range ( $v_{opt}$  see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v<sub>opt.</sub>, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

#### Note

The case drain temperature, which is affected by pressure and speed, can be higher than the reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000).

### Viscosity and temperature of hydraulic fluid

|                                              | -                                                |                                                                              |                                                                                                                                               |
|----------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Viscosity [mm <sup>2</sup> /s]                   | Temperature                                                                  | Comment                                                                                                                                       |
| Transport and storage at ambient temperature |                                                  | $T_{min} \ge -50 \text{ °C}$<br>$T_{opt} = +5 \text{ °C to } +20 \text{ °C}$ | factory preservation: up to 12 months with standard, up to 24 months with long-term                                                           |
| (Cold) start-up <sup>1)</sup>                | $v_{\text{max}} = 1600$                          | $T_{St} \ge -40  ^{\circ}\text{C}$                                           | $t \le 3$ min, without load (p $\le 50$ bar),<br>n $\le 1000$ rpm (for sizes 5 to 200),<br>n $\le 0.25 \cdot n_{nom}$ (for sizes 250 to 1000) |
| Permissible temperature                      | difference                                       | $\Delta T \le 25 \text{ K}$                                                  | between axial piston unit and hydraulic fluid                                                                                                 |
| Warm-up phase                                | $\nu <$ 1600 to 400                              | T = -40 °C to -25 °C                                                         | at $p \leq 0.7$ • $p_{nom}, n \leq 0.5$ • $n_{nom}$ and $t \leq 15$ min                                                                       |
| Operating phase                              |                                                  |                                                                              |                                                                                                                                               |
| Temperature difference                       |                                                  | $\Delta T = approx. 12 K$                                                    | between hydraulic fluid in the bearing and at port T.                                                                                         |
| Maximum temperature                          |                                                  | 115 °C                                                                       | in the bearing                                                                                                                                |
|                                              |                                                  | 103 °C                                                                       | measured at port T                                                                                                                            |
| Continuous operation                         | v = 400  to  10<br>$v_{opt} = 36 \text{ to } 16$ | T = -25 °C to +90 °C                                                         | measured at port T, no restriction within the permissible data                                                                                |
| Short-term operation <sup>2)</sup>           | $\nu_{min} \geq 7$                               | T <sub>max</sub> = +103 °C                                                   | measured at port T, t < 3 min, p < 0.3 • p <sub>nom</sub>                                                                                     |
| FKM shaft seal <sup>1)</sup>                 |                                                  | T ≤ +115 °C                                                                  | see page 5                                                                                                                                    |
|                                              |                                                  |                                                                              |                                                                                                                                               |

<sup>1)</sup> At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

<sup>2)</sup> Sizes 250 to 1000, please contact us.

**5**/34

### Technical data

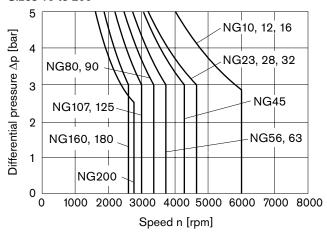
### Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

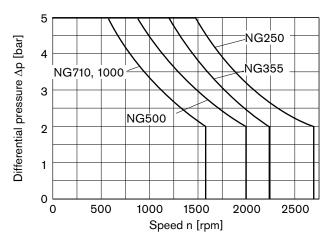
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


### Shaft seal

#### Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

### Sizes 10 to 200



#### Sizes 250 to 1000



The values are valid for an ambient pressure  $p_{abs} = 1$  bar.

### Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

#### Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

### **Direction of flow**

| Direction of rotation, viewed on drive shaft |                   |  |  |  |  |  |  |
|----------------------------------------------|-------------------|--|--|--|--|--|--|
| clockwise                                    | counter-clockwise |  |  |  |  |  |  |
| S to B                                       | S to A            |  |  |  |  |  |  |

### Long-life bearing

### Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

### Flushing flow (recommended)

|                              |    | 355 | 500 | 710 | 1000 |
|------------------------------|----|-----|-----|-----|------|
| q <sub>v flush</sub> (L/min) | 10 | 16  | 16  | 16  | 16   |

### Technical data

### Operating pressure range

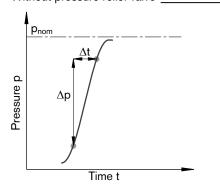
(operating with mineral oil)

### Pressure at service line port A or B

Size 5

| Nominal pressure p <sub>nom</sub> | _315 bar absolute |
|-----------------------------------|-------------------|
| Maximum pressure p <sub>max</sub> | 350 bar absolute  |
| Single operating period           | 10 s              |
| Total operating period            | 300 h             |
|                                   |                   |

Sizes 10 to 200


| Nominal pressure pnom                                        | 400 bar absolute |
|--------------------------------------------------------------|------------------|
| Maximum pressure p <sub>max</sub><br>Single operating period | 450 bar absolute |
| Total operating period                                       | 300 h            |

| Sizes 250 to 1000                                                                       |   |                                   |
|-----------------------------------------------------------------------------------------|---|-----------------------------------|
| Nominal pressure p <sub>nom</sub>                                                       |   | 350 bar absolute                  |
| Maximum pressure p <sub>max</sub><br>Single operating period_<br>Total operating period | х | 400 bar absolute<br>10 s<br>300 h |

Minimum pressure (high-pressure side) \_\_\_\_25 bar absolute

### Rate of pressure change $R_{A \, max}$

Without pressure-relief valve \_\_\_\_\_\_ 16000 bar/s



### Pressure at suction port S (inlet)

| Minimum pressure $p_{S  \text{min}}$ |   | 0.8 bar | absolute |
|--------------------------------------|---|---------|----------|
| Maximum pressure p <sub>S max</sub>  | , | _30 bar | absolute |

### Note

Values for other hydraulic fluids, please contact us.

#### Definition

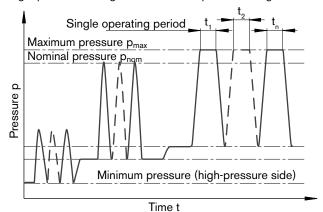
### Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

#### Maximum pressure p<sub>max</sub>

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

### Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

### Minimum pressure (inlet)

Minimum pressure at suction port S (inlet) which is required in order to prevent damage to the axial piston unit. The minimum pressure is dependent on the speed of the axial piston unit (see diagram on page 7).

### Rate of pressure change RA

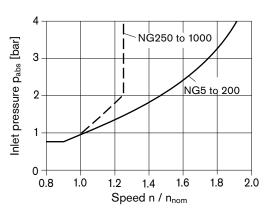
Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.



Total operating period =  $t_1 + t_2 + ... + t_n$ 

7/34

## Technical data


Table of values (theoretical values, without efficiency and tolerances; values rounded)

| Size                                                                |                                                           | NG                             |                                                         | 5                             | 10                            | 12                            | 16                             | 23                             | 28                              | 32                          | 45                    | 56                        | 63                       | 80                       |
|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|---------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|-----------------------------|-----------------------|---------------------------|--------------------------|--------------------------|
| Displacement<br>per revolution                                      |                                                           | $V_g$                          | cm <sup>3</sup>                                         | 4.93                          | 10.3                          | 12                            | 16                             | 22.9                           | 28.1                            | 32                          | 45.6                  | 56.1                      | 63                       | 80.4                     |
| Speed maxim                                                         | ium <sup>1)</sup>                                         | n <sub>nom</sub>               | rpm                                                     | 5600                          | 3150                          | 3150                          | 3150                           | 2500                           | 2500                            | 2500                        | 2240                  | 2000                      | 2000                     | 1800                     |
|                                                                     |                                                           | n <sub>max</sub> <sup>2)</sup> | rpm                                                     | 8000                          | 6000                          | 6000                          | 6000                           | 4750                           | 4750                            | 4750                        | 4250                  | 3750                      | 3750                     | 3350                     |
| Flow at n <sub>nom</sub>                                            |                                                           | qv                             | L/min                                                   | 27.6                          | 32                            | 38                            | 50                             | 57                             | 70                              | 80                          | 102                   | 112                       | 126                      | 145                      |
| Power at                                                            | $\Delta p = 350 \text{ bar}$                              | Р                              | kW                                                      | 14.5 <sup>4)</sup>            | 19                            | 22                            | 29                             | 33                             | 41                              | 47                          | 60                    | 65                        | 74                       | 84                       |
|                                                                     | $\Delta p = 400 \text{ bar}$                              | Р                              | kW                                                      | -                             | 22                            | 25                            | 34                             | 38                             | 47                              | 53                          | 68                    | 75                        | 84                       | 96                       |
| Torque <sup>3)</sup>                                                |                                                           |                                |                                                         |                               |                               |                               |                                |                                |                                 |                             |                       |                           |                          |                          |
| at $V_g$ and                                                        | $\Delta p = 350 \text{ bar}$                              | T                              | Nm                                                      | 24.7 <sup>4)</sup>            | 57                            | 67                            | 89                             | 128                            | 157                             | 178                         | 254                   | 313                       | 351                      | 448                      |
|                                                                     | $\Delta p = 400 \text{ bar}$                              | T                              | Nm                                                      | -                             | 66                            | 76                            | 102                            | 146                            | 179                             | 204                         | 290                   | 357                       | 401                      | 512                      |
| Rotary stiffness                                                    |                                                           | С                              | kNm/rad                                                 | 0.63                          | 0.92                          | 1.25                          | 1.59                           | 2.56                           | 2.93                            | 3.12                        | 4.18                  | 5.94                      | 6.25                     | 8.73                     |
| Moment of ine                                                       | ertia for rotary group                                    | $J_{GR}$                       | kgm <sup>2</sup>                                        | 0.00006                       | 0.0004                        | 0.0004                        | 0.0004                         | 0.0012                         | 0.0012                          | 0.0012                      | 0.0024                | 0.0042                    | 0.0042                   | 0.0072                   |
| Maximum ang                                                         | ular acceleration                                         | α                              | rad/s <sup>2</sup>                                      | 5000                          | 5000                          | 5000                          | 5000                           | 6500                           | 6500                            | 6500                        | 14600                 | 7500                      | 7500                     | 6000                     |
| Case volume                                                         |                                                           | ٧                              | L                                                       |                               | 0.17                          | 0.17                          | 0.17                           | 0.20                           | 0.20                            | 0.20                        | 0.33                  | 0.45                      | 0.45                     | 0.55                     |
| Mass (approx.                                                       | .)                                                        | m                              | kg                                                      | 2.5                           | 6                             | 6                             | 6                              | 9.5                            | 9.5                             | 9.5                         | 13.5                  | 18                        | 18                       | 23                       |
| C:                                                                  |                                                           | NO                             |                                                         | 90                            | 107                           | 405                           | 100                            | 100                            | 000                             | 050                         | 255                   | <b>500</b>                | 740                      | 1000                     |
| Size                                                                |                                                           | NG<br>V <sub>g</sub>           | cm <sup>3</sup>                                         | 90                            | <b>107</b> 106.7              | <b>125</b> 125                | <b>160</b> 160.4               | <b>180</b> 180                 | <b>200</b> 200                  | <b>250</b> 250              | <b>355</b> 355        | <b>500</b> 500            | <b>710</b> 710           | <b>1000</b> 1000         |
| Displacement<br>per revolution                                      |                                                           | <b>v</b> g                     | GIII                                                    | 30                            | 100.7                         | 120                           | 100.4                          | 100                            | 200                             | 200                         | 000                   | 000                       | 710                      | 1000                     |
| Speed maxim                                                         | ium <sup>1)</sup>                                         | n <sub>nom</sub>               | rpm                                                     | 1800                          | 1600                          | 1600                          | 1450                           | 1450                           | 1550                            | 1500                        | 1320                  | 1200                      | 1200                     | 950                      |
|                                                                     |                                                           | n <sub>max</sub> <sup>2)</sup> | rpm                                                     | 3350                          | 3000                          | 3000                          | 2650                           | 2650                           | 2750                            | 1800                        | 1600                  | 1500                      | 1500                     | 1200                     |
| Flow at n <sub>nom</sub>                                            |                                                           | q <sub>V</sub>                 | L/min                                                   | 162                           | 171                           | 200                           | 233                            | 261                            | 310                             | 375                         | 469                   | 600                       | 852                      | 950                      |
| Power at                                                            | $\Delta p = 350 \text{ bar}$                              | Р                              | kW                                                      | 95                            | 100                           | 117                           | 136                            | 152                            | 181                             | 219                         | 273                   | 350                       | 497                      | 554                      |
|                                                                     | $\Delta p = 400 \text{ bar}$                              | Р                              | kW                                                      | 108                           | 114                           | 133                           | 155                            | 174                            | 207                             | _                           | _                     | _                         | _                        | _                        |
| Torque <sup>3)</sup>                                                |                                                           |                                |                                                         |                               | ,                             |                               |                                |                                |                                 |                             |                       |                           |                          |                          |
| •                                                                   |                                                           |                                |                                                         |                               |                               |                               |                                |                                |                                 |                             |                       |                           |                          |                          |
| at V <sub>g</sub> and                                               | $\Delta p = 350 \text{ bar}$                              | Т                              | Nm                                                      | 501                           | 594                           | 696                           | 893                            | 1003                           | 1114                            | 1393                        | 1978                  | 2785                      | 3955                     | 5570                     |
|                                                                     | $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ | T T                            | Nm<br>Nm                                                | 501<br>573                    | 594<br>679                    | 696<br>796                    | 893<br>1021                    | 1003<br>1146                   | 1114<br>1273                    | 1393                        | 1978                  | 2785<br>-                 | 3955                     | 5570                     |
|                                                                     | $\Delta p = 400 \text{ bar}$                              |                                |                                                         |                               |                               |                               |                                |                                |                                 |                             |                       |                           |                          |                          |
| at V <sub>g</sub> and                                               | $\Delta p = 400 \text{ bar}$                              | T<br>c                         | Nm                                                      | 573                           | 679                           | 796                           | 1021<br>17.4                   | 1146                           | 1273<br>57.3                    | 73.1                        | _                     | _                         | _                        |                          |
| at V <sub>g</sub> and  Rotary stiffness  Moment of ine              | $\Delta p = 400 \text{ bar}$                              | T<br>c                         | Nm<br>kNm/rad                                           | 573<br>9.14                   | 679<br>11.2                   | 796<br>11.9                   | 1021<br>17.4                   | 1146<br>18.2                   | 1273<br>57.3<br>0.0353          | 73.1                        | 96.1<br>0.102         | 144                       | 270                      | 324                      |
| at V <sub>g</sub> and  Rotary stiffness  Moment of ine              | $\Delta p = 400 \text{ bar}$ s ertia for rotary group     | T<br>c<br>J <sub>GR</sub>      | Nm<br>kNm/rad<br>kgm²                                   | 573<br>9.14<br>0.0072         | 679<br>11.2<br>0.0116         | 796<br>11.9<br>0.0116         | 1021<br>17.4<br>0.0220         | 1146<br>18.2<br>0.0220         | 1273<br>57.3<br>0.0353          | -<br>73.1<br>0.061          | 96.1<br>0.102         | -<br>144<br>0,178         | -<br>270<br>0.55         | -<br>324<br>0.55         |
| at V <sub>g</sub> and  Rotary stiffness  Moment of ine  Maximum ang | Δp = 400 bar s ertia for rotary group ular acceleration   | T<br>c<br>J <sub>GR</sub>      | Nm<br>kNm/rad<br>kgm <sup>2</sup><br>rad/s <sup>2</sup> | 573<br>9.14<br>0.0072<br>6000 | 679<br>11.2<br>0.0116<br>4500 | 796<br>11.9<br>0.0116<br>4500 | 1021<br>17.4<br>0.0220<br>3500 | 1146<br>18.2<br>0.0220<br>3500 | 1273<br>57.3<br>0.0353<br>11000 | -<br>73.1<br>0.061<br>10000 | 96.1<br>0.102<br>8300 | -<br>144<br>0,178<br>5500 | -<br>270<br>0.55<br>4300 | -<br>324<br>0.55<br>4500 |

- 1) The values are valid:
  - at an absolute pressure p<sub>abs</sub> = 1 bar at suction port S
  - for the optimum viscosity range from  $\nu_{\text{opt}} =$  16 to 36  $\text{mm}^2/\text{s}$
  - with hydraulic fluid based on mineral oils
- 2) Maximum speed (limiting speed) with increased inlet pressure p<sub>abs</sub> at suction port S, see adjacent diagram.
- 3) Torque without radial force, with radial force see page 8
- 4) Torque at  $\Delta p = 315$  bar

### Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.



# Technical data

### Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

| •                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                    |                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | NG                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                       | <b>5</b> <sup>3)</sup>                                                                             | 10                                                                                                  | 10                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       | Ø                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                      | 12                                                                                                 | 20                                                                                                  | 25                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fq                                                    | F <sub>q max</sub>                                                                                                                                                                                                                                                                                                                                       | kN                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6                                                                     | 1.6                                                                                                | 3.0                                                                                                 | 3.2                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a                                                     | a                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                      | 12                                                                                                 | 16                                                                                                  | 16                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9                                                     | T <sub>max</sub>                                                                                                                                                                                                                                                                                                                                         | Nm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.7                                                                    | 24.7                                                                                               | 66                                                                                                  | 66                                                                                                    | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| е Др                                                  | $\Delta p_{perm}$                                                                                                                                                                                                                                                                                                                                        | bar                                                                                                                                                                                                                                                                                                                                                                                                                                           | 315                                                                     | 315                                                                                                | 400                                                                                                 | 400                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>-</b> +→ <b>_</b>                                  | +F <sub>ax max</sub>                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                                                                     | 180                                                                                                | 320                                                                                                 | 320                                                                                                   | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 「ax ∸ ← ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─           | -F <sub>ax max</sub>                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                       | 0                                                                                                  | 0                                                                                                   | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ar operating pressure                                 | ±F <sub>ax perm/bar</sub>                                                                                                                                                                                                                                                                                                                                | N/bar                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                     | 1.5                                                                                                | 3.0                                                                                                 | 3.0                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | NG                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                      | 28                                                                                                 | 32                                                                                                  | 45                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>56</b> <sup>4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       | Ø                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                      | 30                                                                                                 | 30                                                                                                  | 30                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fq                                                    | F <sub>q max</sub>                                                                                                                                                                                                                                                                                                                                       | kN                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                                                                     | 5.4                                                                                                | 5.4                                                                                                 | 7.6                                                                                                   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a                                                     | a                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                      | 16                                                                                                 | 16                                                                                                  | 18                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e                                                     | T <sub>max</sub>                                                                                                                                                                                                                                                                                                                                         | Nm                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179                                                                     | 179                                                                                                | 204                                                                                                 | 290                                                                                                   | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| е ∆р                                                  | $\Delta p_{perm}$                                                                                                                                                                                                                                                                                                                                        | bar                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                                     | 400                                                                                                | 400                                                                                                 | 400                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>-</b>                                              | +F <sub>ax max</sub>                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                     | 500                                                                                                | 500                                                                                                 | 630                                                                                                   | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fax±==                                                | -F <sub>ax max</sub>                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                       | 0                                                                                                  | 0                                                                                                   | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                       | ır                                                                                                                                                                                                                                                                                                                                                       | N 1 /1                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                    |                                                                                                     |                                                                                                       | ~ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ar operating pressure                                 | ±Γ <sub>ax perm/bar</sub>                                                                                                                                                                                                                                                                                                                                | N/bar                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2                                                                     | 5.2                                                                                                | 5.2                                                                                                 | 7.0                                                                                                   | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ar operating pressure                                 | NG                                                                                                                                                                                                                                                                                                                                                       | N/bar                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 <sup>4)</sup>                                                        | 80                                                                                                 | 90                                                                                                  | 107                                                                                                   | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ar operating pressure                                 |                                                                                                                                                                                                                                                                                                                                                          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                                                                    |                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fq                                                    | NG                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 804)                                                                    | 80                                                                                                 | 90                                                                                                  | 107                                                                                                   | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | NG<br>Ø                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>80</b> <sup>4)</sup> 35                                              | <b>80</b><br>40                                                                                    | <b>90</b><br>40                                                                                     | <b>107</b> 40                                                                                         | <b>107</b> 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>125</b> 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>160</b> 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>160</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>180</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                       | NG<br>Ø<br>F <sub>q max</sub>                                                                                                                                                                                                                                                                                                                            | mm<br>kN                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>80</b> <sup>4)</sup><br>35<br>11.1                                   | <b>80</b><br>40<br>11.4                                                                            | <b>90</b><br>40<br>11.4                                                                             | <b>107</b><br>40<br>13.6                                                                              | <b>107</b><br>45<br>14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>45<br>14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160<br>45<br>18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160<br>50<br>18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180<br>50<br>18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fq                                                    | NG<br>Ø<br>F <sub>q max</sub>                                                                                                                                                                                                                                                                                                                            | mm<br>kN<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>80</b> <sup>4)</sup><br>35<br>11.1                                   | <b>80</b> 40 11.4                                                                                  | 90<br>40<br>11.4<br>20                                                                              | 107<br>40<br>13.6<br>20                                                                               | 107<br>45<br>14.1<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125<br>45<br>14.1<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160<br>45<br>18.1<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160<br>50<br>18.3<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 180<br>50<br>18.3<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fq                                                    | NG<br>Ø<br>F <sub>q max</sub><br>a<br>T <sub>max</sub>                                                                                                                                                                                                                                                                                                   | mm<br>kN<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>80</b> <sup>4)</sup><br>35<br>11.1<br>20<br>488                      | 80<br>40<br>11.4<br>20<br>512                                                                      | 90<br>40<br>11.4<br>20<br>573                                                                       | 107<br>40<br>13.6<br>20<br>679                                                                        | 107<br>45<br>14.1<br>20<br>679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125<br>45<br>14.1<br>20<br>796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160<br>45<br>18.1<br>25<br>1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160<br>50<br>18.3<br>25<br>1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180<br>50<br>18.3<br>25<br>1146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fq                                                    | NG<br>Ø<br>F <sub>q max</sub><br>a<br>T <sub>max</sub><br>Δp perm                                                                                                                                                                                                                                                                                        | mm<br>kN<br>mm<br>Nm<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                   | 80 <sup>4)</sup> 35 11.1 20 488 380                                     | 80<br>40<br>11.4<br>20<br>512<br>400                                                               | 90<br>40<br>11.4<br>20<br>573<br>400                                                                | 107<br>40<br>13.6<br>20<br>679<br>400                                                                 | 107<br>45<br>14.1<br>20<br>679<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125<br>45<br>14.1<br>20<br>796<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160<br>45<br>18.1<br>25<br>1021<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160<br>50<br>18.3<br>25<br>1021<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180<br>50<br>18.3<br>25<br>1146<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fq                                                    | $\begin{array}{c} \textbf{NG} \\ \emptyset \\ \textbf{F}_{q \text{ max}} \\ \textbf{a} \\ \\ \textbf{T}_{max} \\ \Delta p_{\text{ perm}} \\ \\ \textbf{+F}_{ax \text{ max}} \\ \\ \textbf{-F}_{ax \text{ max}} \end{array}$                                                                                                                              | mm<br>kN<br>mm<br>Nm<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                   | 80 <sup>4)</sup><br>35<br>11.1<br>20<br>488<br>380<br>1000              | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000                                                       | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000                                                        | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250                                                         | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>q</sub> a e e Δp F <sub>ax</sub> ±=            | $\begin{array}{c} \textbf{NG} \\ \emptyset \\ \textbf{F}_{q \text{ max}} \\ \textbf{a} \\ \\ \textbf{T}_{max} \\ \Delta p_{\text{ perm}} \\ \\ \textbf{+F}_{ax \text{ max}} \\ \\ \textbf{-F}_{ax \text{ max}} \end{array}$                                                                                                                              | mm<br>kN<br>mm<br>Nm<br>bar<br>N                                                                                                                                                                                                                                                                                                                                                                                                              | 80 <sup>4)</sup> 35 11.1 20 488 380 1000                                | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000                                                       | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000                                                        | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250                                                         | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>q</sub> a e e Δp F <sub>ax</sub> ±=            | $\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q  \text{max}} \\ a \\ \\ \Delta p_{ \text{perm}} \\ \\ + F_{ax  \text{max}} \\ \\ - F_{ax  \text{max}} \\ \\ \pm F_{ax  \text{perm/bar}} \end{array}$                                                                                                                                                  | mm<br>kN<br>mm<br>Nm<br>bar<br>N                                                                                                                                                                                                                                                                                                                                                                                                              | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0                              | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0                                                  | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0                                                   | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0                                                    | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>q</sub> a e e Δp F <sub>ax</sub> ±=            | $\begin{array}{c} \textbf{NG} \\ \varnothing \\ F_{q \text{ max}} \\ a \\ \\ T_{max} \\ \Delta p_{\text{ perm}} \\ + F_{ax \text{ max}} \\ - F_{ax \text{ max}} \\ \\ \pm F_{ax \text{ perm/bar}} \\ \\ \textbf{NG} \end{array}$                                                                                                                         | mm kN mm Nm bar N N N                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6                         | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6                                          | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6                                           | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9                                            | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>q</sub> a e e Δp F <sub>ax</sub> ±=            | $\begin{array}{c} \textbf{NG} \\ \textbf{\varnothing} \\ \textbf{F}_{q \text{ max}} \\ \textbf{a} \\ \\ \textbf{T}_{max} \\ \Delta \textbf{p}_{perm} \\ \textbf{+F}_{ax \text{ max}} \\ \textbf{-F}_{ax \text{ max}} \\ \\ \textbf{\pm F}_{ax \text{ perm/bar}} \\ \\ \textbf{NG} \\ \textbf{\varnothing} \\ \end{array}$                                | mm kN mm bar N N N N mm                                                                                                                                                                                                                                                                                                                                                                                                                       | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6 200 50                  | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6<br>250<br>50<br>1.2 <sup>6</sup> )       | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6<br>355<br>60                              | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>500<br>70                               | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>710<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9<br>1000<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>q</sub> a e e Δp F <sub>ax</sub> ±=            | $\begin{array}{c} \textbf{NG} \\ \textbf{0} \\ \textbf{F}_{q \text{ max}} \\ \textbf{a} \\ \\ \textbf{T}_{max} \\ \textbf{\Deltap}_{perm} \\ \textbf{+F}_{ax \text{ max}} \\ \textbf{-F}_{ax \text{ max}} \\ \\ \textbf{\pm F}_{ax \text{ perm/bar}} \\ \textbf{NG} \\ \textbf{0} \\ \textbf{F}_{q \text{ max}} \\ \end{array}$                          | mm kN mm bar N N N N kN kN kN                                                                                                                                                                                                                                                                                                                                                                                                                 | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273     | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6<br>250<br>50<br>1.2 <sup>6</sup> )<br>41 | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6<br>355<br>60<br>1.5 <sup>6)</sup><br>52.5 | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>500<br>70<br>1.9 <sup>6)</sup><br>52.5  | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>710<br>90<br>3.0 <sup>6)</sup><br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9<br>1000<br>90<br>2.6 <sup>6)</sup><br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>ax</sub> ±==================================== | $\begin{array}{c} \textbf{NG} \\ \varnothing \\ F_{q \text{ max}} \\ a \\ \\ \Delta p_{\text{ perm}} \\ + F_{ax \text{ max}} \\ - F_{ax \text{ max}} \\ \\ \pm F_{ax \text{ perm/bar}} \\ \textbf{NG} \\ \varnothing \\ F_{q \text{ max}} \\ \\ a \\ \end{array}$                                                                                        | mm kN mm bar N N N N kN kN kN mm                                                                                                                                                                                                                                                                                                                                                                                                              | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6 200 50 20.3             | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6<br>250<br>50<br>1.2 <sup>6</sup> )       | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6<br>355<br>60<br>1.5 <sup>6)</sup><br>52.5 | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>500<br>70<br>1.9 <sup>6</sup> )<br>52.5 | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>710<br>90<br>3.0 <sup>6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9<br>1000<br>90<br>2.6 <sup>6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>ax</sub> ±==================================== | NG Ø F <sub>q max</sub> a T <sub>max</sub> Δp perm +F <sub>ax max</sub> -F <sub>ax max</sub> ±F <sub>ax perm/bar</sub> NG Ø F <sub>q max</sub> a T <sub>max</sub>                                                                                                                                                                                        | mm kN mm bar N N N N N N N N N N N N N M M M M M M                                                                                                                                                                                                                                                                                                                                                                                            | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273     | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6<br>250<br>50<br>1.2 <sup>6</sup> )<br>41 | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6<br>355<br>60<br>1.5 <sup>6)</sup><br>52.5 | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>500<br>70<br>1.9 <sup>6)</sup><br>52.5  | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>710<br>90<br>3.0 <sup>6)</sup><br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9<br>1000<br>90<br>2.6 <sup>6)</sup><br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>ax</sub> ±==================================== | $\begin{array}{c} \textbf{NG} \\ \emptyset \\ F_{q  \text{max}} \\ a \\ \end{array}$ $\begin{array}{c} T_{max} \\ \Delta p_{ perm} \\ + F_{ax  max} \\ - F_{ax  max} \\ \end{array}$ $\begin{array}{c} \pm F_{ax  perm/bar} \\ \textbf{NG} \\ \emptyset \\ F_{q  max} \\ a \\ \end{array}$ $\begin{array}{c} T_{max} \\ \Delta p_{ perm} \\ \end{array}$ | mm kN mm bar N N N N N N N N N N N N N N N M M M M                                                                                                                                                                                                                                                                                                                                                                                            | 80 <sup>4)</sup> 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273 400 | 80<br>40<br>11.4<br>20<br>512<br>400<br>1000<br>0<br>10.6<br>250<br>50<br>1.2 <sup>6</sup><br>41   | 90<br>40<br>11.4<br>20<br>573<br>400<br>1000<br>0<br>10.6<br>355<br>60<br>1.5 <sup>6</sup> )<br>5)  | 107<br>40<br>13.6<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>500<br>70<br>1.9 <sup>6</sup> )<br>52.5 | 107<br>45<br>14.1<br>20<br>679<br>400<br>1250<br>0<br>12.9<br>710<br>90<br>3.0 <sup>6)</sup><br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>45<br>14.1<br>20<br>796<br>400<br>1250<br>0<br>12.9<br>1000<br>90<br>2.6 <sup>6</sup> )<br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160<br>45<br>18.1<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>50<br>18.3<br>25<br>1021<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180<br>50<br>18.3<br>25<br>1146<br>400<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                       | e Δp  Fax±====================================                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c c} & \emptyset \\ \hline F_{q max} \\ \hline a \\ \hline \\ e \Delta p \\ \hline \\ F_{ax} \\ \hline \\ e \Delta p \\ \hline \\ F_{ax} \\ \hline \\ e \Delta p \\ \hline \\ F_{ax} \\ \hline \\ \hline \\ e \Delta p \\ \hline \\ F_{ax} \\ \hline \\ \hline \\ \hline \\ e \Delta p \\ \hline \\ \hline \\ \hline \\ F_{ax} \\ \hline \\ $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                  |                                                                                                    |                                                                                                     | Fq max   NN   1.6   1.6   3.0                                                                         | Ø       mm       12       12       20       25         Fq max       kN       1.6       1.6       3.0       3.2         a       mm       12       12       16       16         e       T <sub>max</sub> Nm       24.7       24.7       66       66         e Δp       Δp perm       bar       315       315       400       400         Fax ± ± ± ±       4Fax max       N       180       180       320       320         Fax max       N       0       0       0       0       0         NG       28       28       32       45         Ø       mm       25       30       30       30         NG       28       28       32       45         Ø       mm       25       30       30       30         Image: Solution of the permits | φ         mm         12         12         20         25         20           Fq max         kN         1.6         1.6         3.0         3.2         3.0           a         mm         12         12         16         16         16           e         T <sub>max</sub> Nm         24.7         24.7         66         66         76           e         Δp perm         bar         315         315         400         400         400           Fax ±         +Fax max         N         180         180         320         320         320           ar operating pressure         ±Fax perm/bar         N/bar         1.5         1.5         3.0         3.0         3.0           NG         28         28         32         45         56         6         6         6         6         6         6         76         9.5         7         7         7         7         7         7         9.5         7         7         9.5         7         9.5         8         9.5         9.5         9.5         9.5         9.5         9.5         9.5         9.5         9.5         9.5         9.5 | φ         mm         12         12         20         25         20         25           Fq max         kN         1.6         1.6         3.0         3.2         3.0         3.2           a         mm         12         12         16         16         16         16           a         T <sub>max</sub> Nm         24.7         24.7         66         66         76         76           Apperm         bar         315         315         400         400         400         400           Fax± | φ         mm         12         12         20         25         20         25         25           Fq         Fq         kN         1.6         1.6         3.0         3.2         3.0         3.2         3.2           a         mm         12         12         16         16         16         16         16           a         T <sub>max</sub> Nm         24.7         24.7         66         66         76         76         102           a         Δp perm         bar         315         315         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         30         30         30         30         30         30         30         35           B         Fq         max         kN         5.7         5.4         5.4         7.6         9.5         7.8 | Ø         mm         12         12         20         25         20         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         26         26         26         26         6         6         6         6         6         6         76         76         102         146         100         146         100         146         100         100         100         100         100         100         100         100         100         100         100         100         100 |

<sup>1)</sup> With intermittent operation

6) When at a standstill or when axial piston unit operating in nonpressurized conditions. Higher forces are permissible when under pressure, please contact us.

#### Note

Influence of the direction of the permissible axial force:

 $+F_{ax max}$  = Increase in service life of bearings

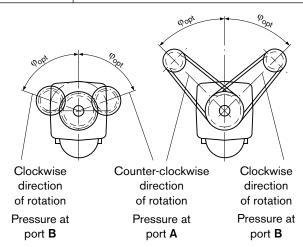
 $-F_{ax max}$  = Reduction in service life of bearings (avoid)

<sup>2)</sup> Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

<sup>3)</sup> Conical shaft with threaded pin and woodruff key (DIN 6888)

<sup>4)</sup> Restricted technical data only for splined shaft

<sup>5)</sup> Please contact us.


9/34

### Technical data

### Effect of radial force $F_q$ on the service life of bearings

By selecting a suitable direction of radial force  $F_{\rm q}$ , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

|             | Toothed gear drive | V-belt output      |
|-------------|--------------------|--------------------|
| NG          | φ <sub>opt</sub> . | φ <sub>opt</sub> . |
| 5 to 180    | ± 70°              | ± 45°              |
| 200 to 1000 | ± 45°              | ± 70°              |



### Determining the operating characteristics

Flow 
$$q_v = \frac{V_g \cdot n \cdot \eta_v}{1000}$$
 [L/min]

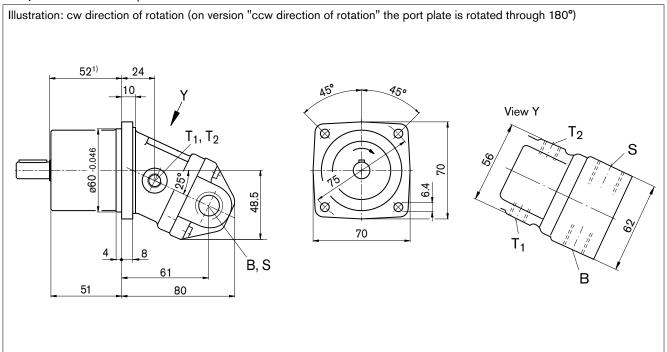
Torque 
$$T = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}}$$
 [Nm]

Power 
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t} [kW]$$

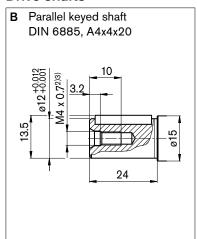
V<sub>g</sub> = Displacement per revolution in cm<sup>3</sup>

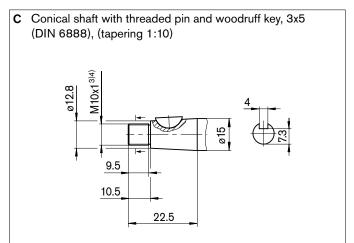
= Differential pressure in bar

= Speed in rpm


= Volumetric efficiency

η<sub>mh</sub> = Mechanical-hydraulic efficiency


 $\eta_t$  = Total efficiency ( $\eta_t = \eta_v \cdot \eta_{mh}$ )


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### Port plate 07 - Threaded ports A/B and S at side



### **Drive shafts**





| Designation    | Port for     | Standard <sup>6)</sup> | Size <sup>3)</sup> | Maximum pressure [bar] <sup>5)</sup> | State <sup>7)</sup> |
|----------------|--------------|------------------------|--------------------|--------------------------------------|---------------------|
| B (A)          | Service line | DIN 3852               | M18 x 1.5; 12 deep | 350                                  | 0                   |
| S              | Suction line | DIN 3852               | M22 x 1.5; 14 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line   | DIN 3852               | M10 x 1; 8 deep    | 3                                    | 0                   |
| T <sub>2</sub> | Drain line   | DIN 3852               | M10 x 1; 8 deep    | 3                                    | 0                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Thread according to DIN 3852, maximum tightening torque: 30 Nm
- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)

# Dimensions sizes 10, 12, 16

similar to ISO 3019-2

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 06 - Threaded port A/B at side and threaded port S at rear

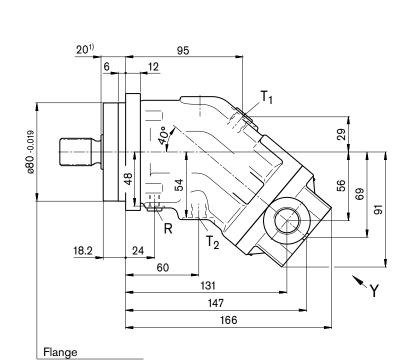
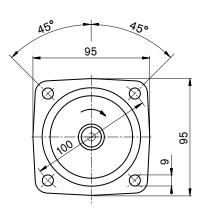
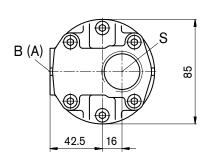
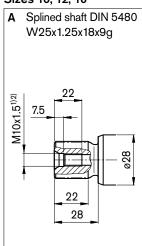




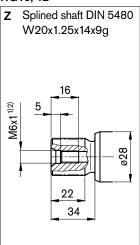

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)



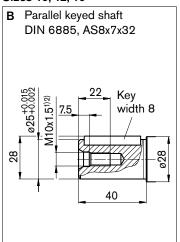
View Y



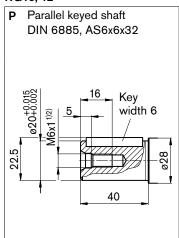

## Dimensions sizes 10, 12, 16


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


Sizes 10, 12, 16




NG10, 12

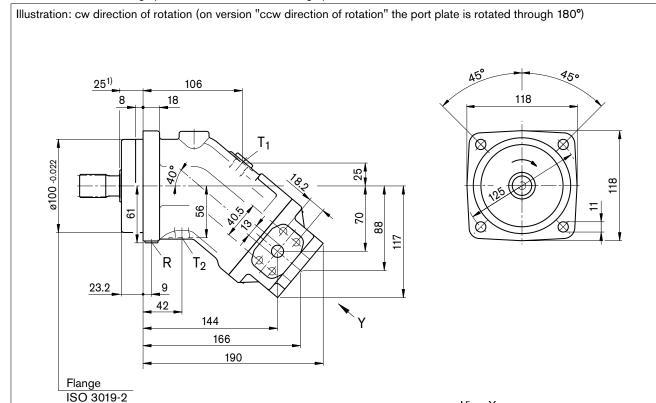


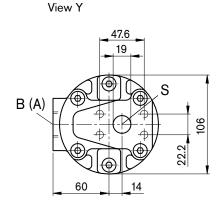
Sizes 10, 12, 16



NG10, 12




| Designation    | Port for     | Standard <sup>5)</sup> | Size <sup>2)</sup> | Maximum pressure [bar]3) | State <sup>6)</sup> |
|----------------|--------------|------------------------|--------------------|--------------------------|---------------------|
| B (A)          | Service line | DIN 3852               | M22 x 1.5; 14 deep | 450                      | 0                   |
| S              | Suction line | DIN 3852               | M33 x 2; 18 deep   | 30                       | 0                   |
| T <sub>1</sub> | Drain line   | DIN 3852               | M12 x 1.5; 12 deep | 3                        | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line   | DIN 3852               | M12 x 1.5; 12 deep | 3                        | O <sup>4)</sup>     |
| R              | Air bleed    | DIN 3852               | M8 x 1; 8 deep     | 3                        | Χ                   |

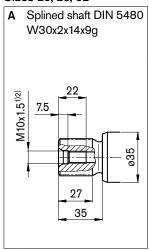

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

# Dimensions sizes 23, 28, 32

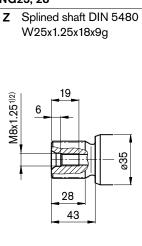
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

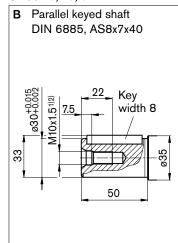




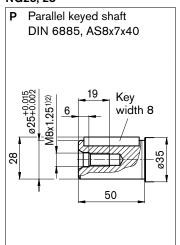

## Dimensions sizes 23, 28, 32


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


Sizes 23, 28, 32




NG23, 28

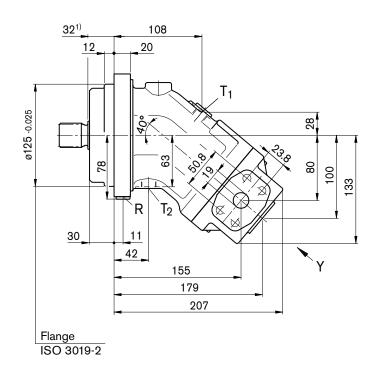


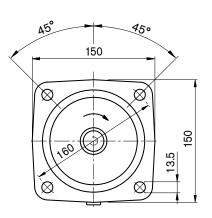
Sizes 23, 28, 32

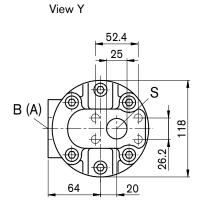


NG23, 28



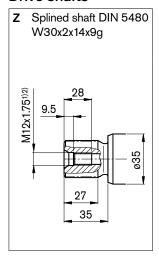

| Designation    | Port for                             | Standard                         | Size <sup>2)</sup>           | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|--------------------------------------|----------------------------------|------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>5)</sup><br>DIN 13 | 1/2 in<br>M8 x 1.25; 15 deep | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>5)</sup><br>DIN 13 | 3/4 in<br>M10 x 1.5; 17 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M16 x 1.5; 12 deep           | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M16 x 1.5; 12 deep           | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>6)</sup>           | M10 x 1; 12 deep             | 3                                    | Χ                   |

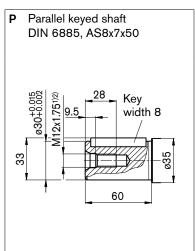

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)





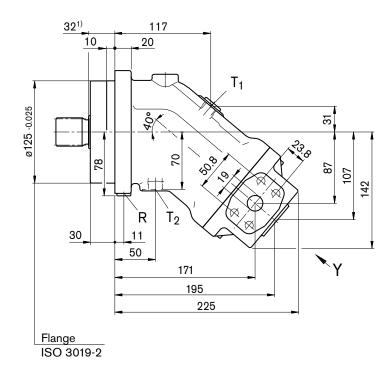

### Before finalizing your design, request a binding installation drawing. Dimensions in mm.

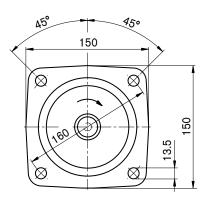
### **Drive shafts**





| Designation    | Port for                             | Standard                         | Size <sup>2)</sup>           | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|--------------------------------------|----------------------------------|------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>5)</sup><br>DIN 13 | 3/4 in<br>M10 x 1.5; 17 deep | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>5)</sup><br>DIN 13 | 1 in<br>M10 x 1.5; 17 deep   | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep           | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep           | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>6)</sup>           | M12 x 1.5; 12 deep           | 3                                    | Χ                   |


- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)


# Dimensions sizes 56, 63

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

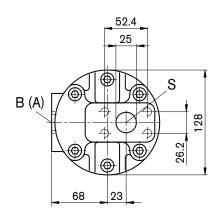
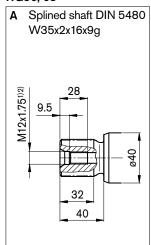

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

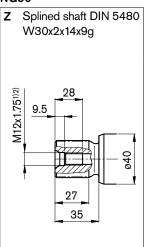




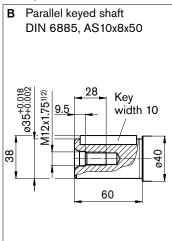
View Y



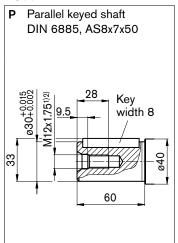

## Dimensions sizes 56, 63


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


### NG56, 63




### NG56

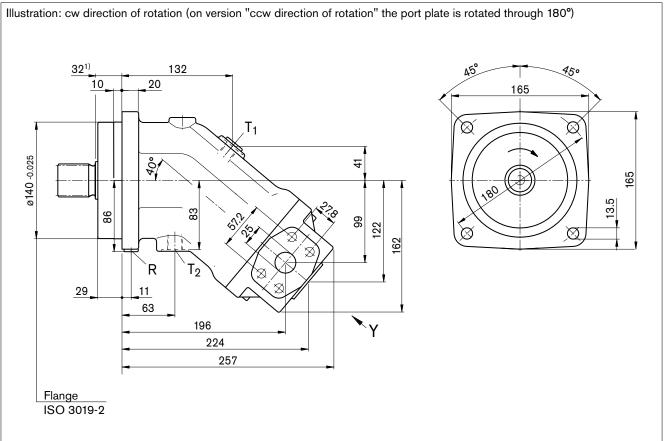


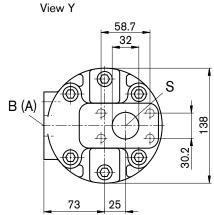
### NG56, 63



### NG56




| Designation    | Port for                             | Standard                         | Size <sup>2)</sup>           | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|--------------------------------------|----------------------------------|------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>5)</sup><br>DIN 13 | 3/4 in<br>M10 x 1.5; 17 deep | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>5)</sup><br>DIN 13 | 1 in<br>M10 x 1.5; 17 deep   | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep           | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep           | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>6)</sup>           | M12 x 1.5; 12 deep           | 3                                    | Χ                   |

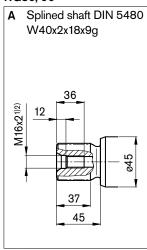

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

# Dimensions sizes 80, 90

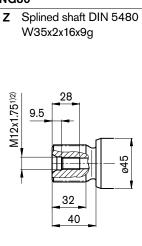
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

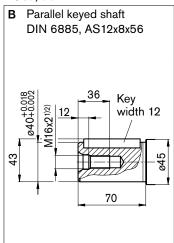




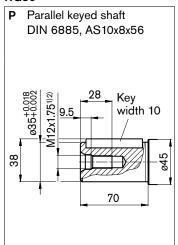

## Dimensions sizes 80, 90


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


### NG80, 90




### NG80



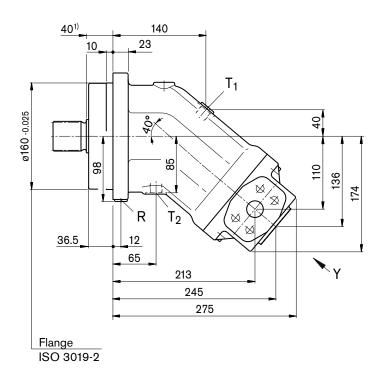
### NG80, 90

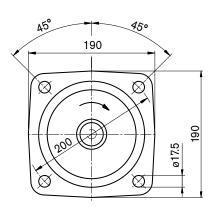


### NG80

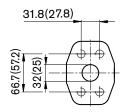


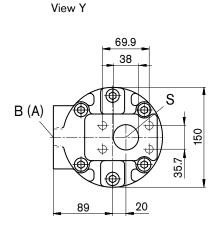
| Designation    | Port for                             | Standard                         | Size <sup>2)</sup>             | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|--------------------------------------|----------------------------------|--------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>5)</sup><br>DIN 13 | 1 in<br>M12 x 1.5; 17 deep     | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>5)</sup><br>DIN 13 | 1 1/4 in<br>M10 x 1.5; 17 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep             | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep             | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>6)</sup>           | M12 x 1.5; 12 deep             | 3                                    | Χ                   |


- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)


# Dimensions sizes 107, 125

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

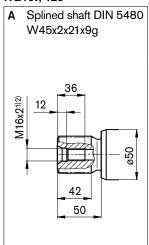

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)



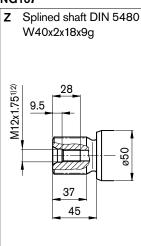


Detail: port A/B (dimensions in brackets for size 107)

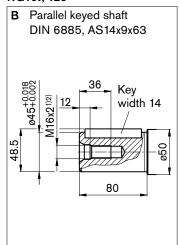




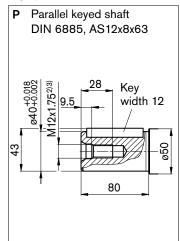

## Dimensions sizes 107, 125


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


### NG107, 125



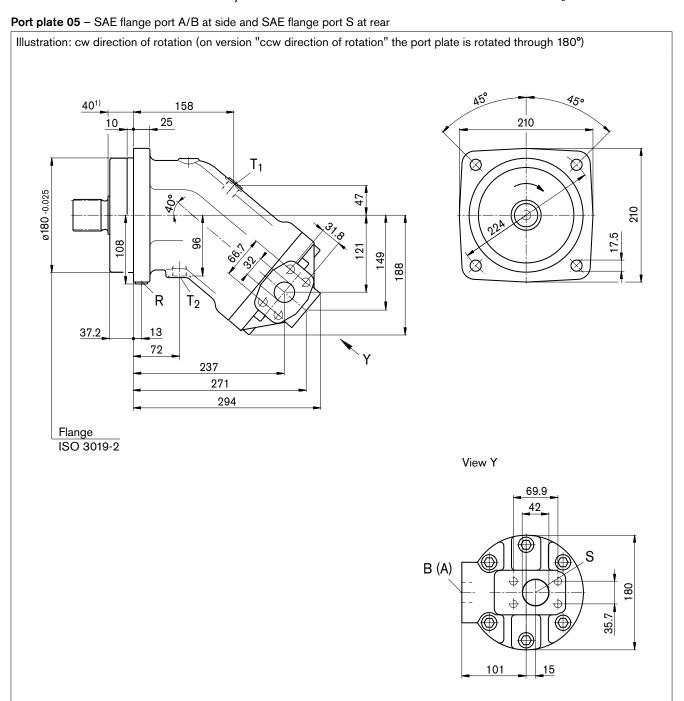

### NG107



### NG107, 125



### NG107

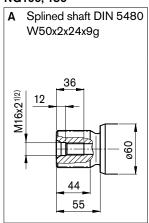



| Designation    | Port for                         | Standard                         | Size <sup>2)</sup>                                            | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|----------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line                     | SAE J518 <sup>5)</sup>           | 1 in (size 107)<br>1 1/4 in (size 125)                        | 450                                  | 0                   |
|                | Fastening thread B/A             | DIN 13                           | M12 x 1.75; 17 deep (size 107)<br>M14 x 2; 19 deep (size 125) |                                      |                     |
| S              | Suction line<br>Fastening thread | SAE J5185 <sup>)</sup><br>DIN 13 | 1 1/2 in<br>M12 x 1.75; 20 deep                               | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                       | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep                                            | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                       | DIN 3852 <sup>6)</sup>           | M18 x 1.5; 12 deep                                            | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                        | DIN 3852 <sup>6)</sup>           | M14 x 1.5; 12 deep                                            | 3                                    | Χ                   |

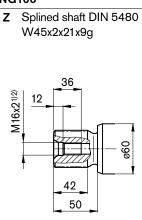
- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

# Dimensions sizes 160, 180

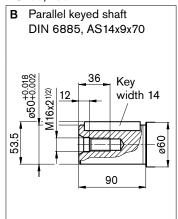
Before finalizing your design, request a binding installation drawing. Dimensions in mm.



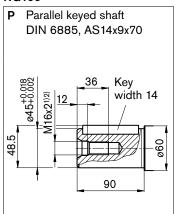

# Dimensions sizes 160, 180


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

### **Drive shafts**


### NG160, 180



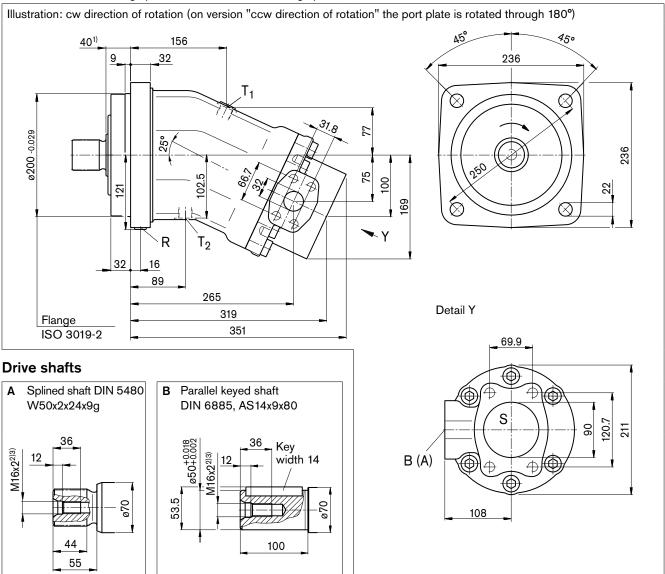

### NG160



### NG160, 180



### NG160

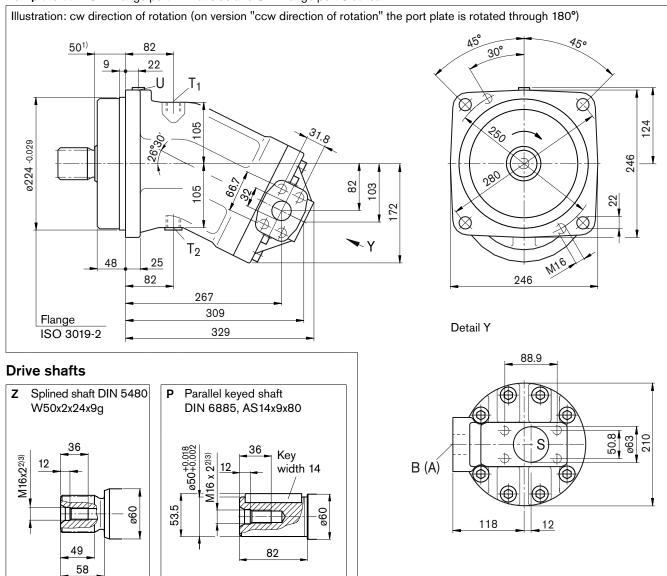



| Designation    | Port for                             | Standard                         | Size <sup>2)</sup>              | Maximum pressure [bar] <sup>3)</sup> | State <sup>7)</sup> |
|----------------|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>5)</sup><br>DIN 13 | 1 1/4 in<br>M14 x 2; 19 deep    | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>5)</sup><br>DIN 13 | 1 1/2 in<br>M12 x 1.75; 20 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M22 x 1.5; 14 deep              | 3                                    | X <sup>4)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>6)</sup>           | M22 x 1.5; 14 deep              | 3                                    | O <sup>4)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>6)</sup>           | M14 x 1.5; 12 deep              | 3                                    | Х                   |

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 34 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

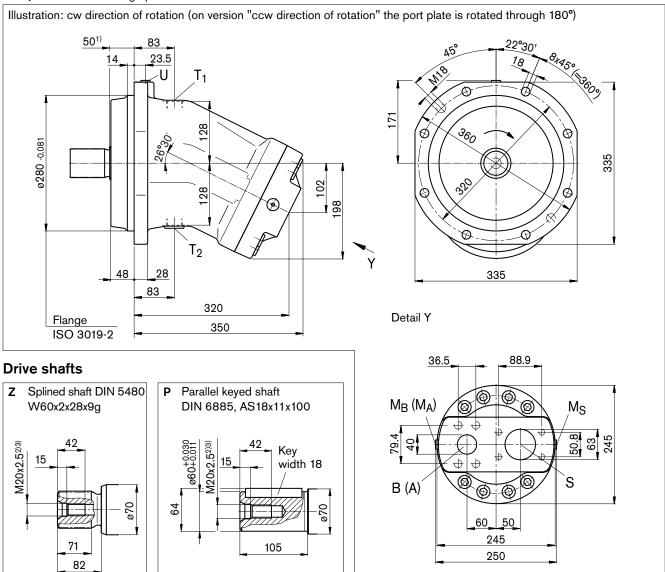



| Designation    | Port for                             | Standard                         | Size <sup>3)</sup>           | Maximum pressure [bar] <sup>4)</sup> | State <sup>8)</sup> |
|----------------|--------------------------------------|----------------------------------|------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/4 in<br>M14 x 2; 19 deep | 450                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 3 1/2 in<br>M16 x 2; 24 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>7)</sup>           | M22 x 1.5; 14 deep           | 3                                    | X <sup>5)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>7)</sup>           | M22 x 1.5; 14 deep           | 3                                    | O <sup>5)</sup>     |
| R              | Air bleed                            | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep           | 3                                    | Х                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

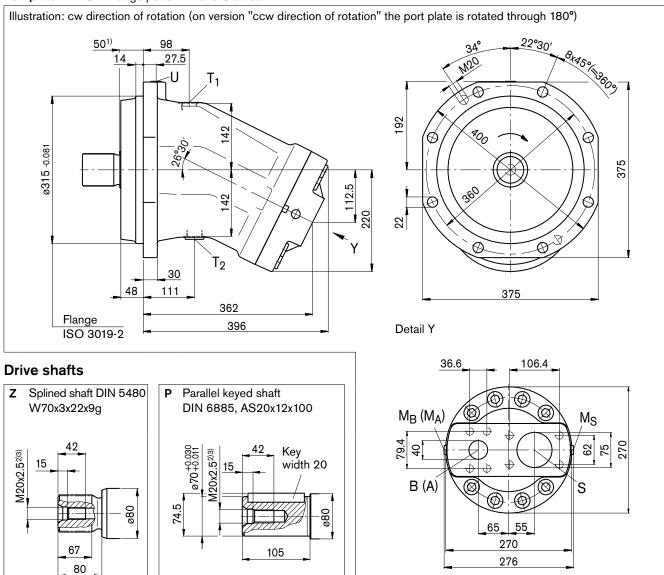



| Designation    | Port for                             | Standard                         | Size <sup>3)</sup>              | Maximum pressure [bar] <sup>4)</sup> | State <sup>8)</sup> |
|----------------|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|---------------------|
| B (A)          | Service line<br>Fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/4 in<br>M14 x 2; 19 deep    | 400                                  | 0                   |
| S              | Suction line<br>Fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 2 1/2 in<br>M12 x 1.75; 17 deep | 30                                   | 0                   |
| T <sub>1</sub> | Drain line                           | DIN 3852 <sup>7)</sup>           | M22 x 1.5; 14 deep              | 3                                    | O <sup>5)</sup>     |
| T <sub>2</sub> | Drain line                           | DIN 3852 <sup>7)</sup>           | M22 x 1.5; 14 deep              | 3                                    | X <sup>5)</sup>     |
| U              | Bearing flushing                     | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep              | 3                                    | Χ                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear

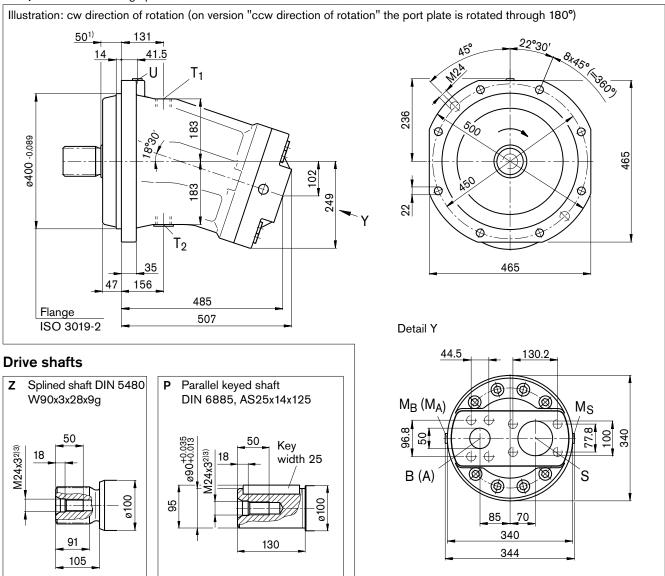



| Designation                     | Port for                             | Standard                         | Size <sup>3)</sup>              | Maximum pressure [bar] <sup>4)</sup> | State <sup>8)</sup> |
|---------------------------------|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|---------------------|
| B (A)                           | Service line<br>Fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/2 in<br>M16 x 2; 21 deep    | 400                                  | 0                   |
| S                               | Suction line<br>Fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 2 1/2 in<br>M12 x 1.75; 17 deep | 30                                   | 0                   |
| T <sub>1</sub>                  | Drain line                           | DIN 3852 <sup>7)</sup>           | M33 x 2; 18 deep                | 3                                    | O <sup>5)</sup>     |
| T <sub>2</sub>                  | Drain line                           | DIN 3852 <sup>7)</sup>           | M33 x 2; 18 deep                | 3                                    | X <sup>5)</sup>     |
| U                               | Bearing flushing                     | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep              | 3                                    | X                   |
| M <sub>A</sub> , M <sub>B</sub> | Measuring operating pressure         | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep              | 400                                  | Х                   |
| Ms                              | Measuring suction pressure           | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep              | 30                                   | Х                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $_{5)}$  Depending on installation position,  $T_1$  or  $T_2$  must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear

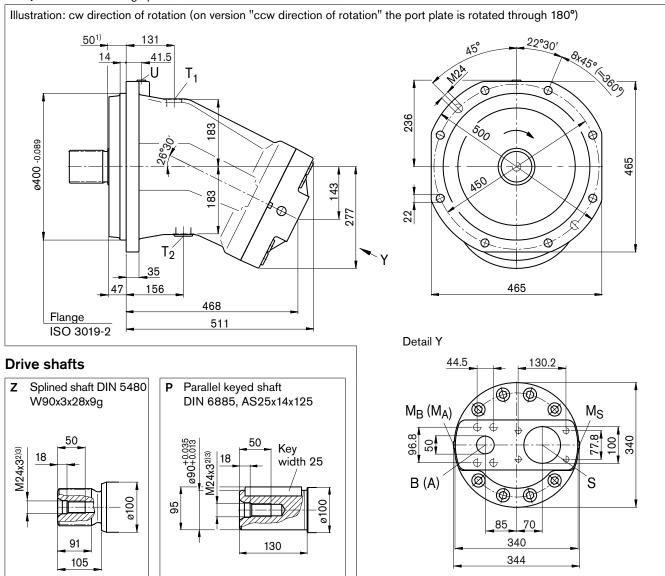



| Designation                     | Port for                          | Standard                         | Size <sup>3)</sup>           | Maximum pressure [bar] <sup>4)</sup> | State <sup>8)</sup> |
|---------------------------------|-----------------------------------|----------------------------------|------------------------------|--------------------------------------|---------------------|
| B (A)                           | Service line fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/2 in<br>M16 x 2; 21 deep | 400                                  | 0                   |
| S                               | Suction line fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 3 in<br>M16 x 2; 24 deep     | 30                                   | 0                   |
| T <sub>1</sub>                  | Drain line                        | DIN 3852 <sup>7)</sup>           | M33 x 2; 18 deep             | 3                                    | O <sup>5)</sup>     |
| T <sub>2</sub>                  | Drain line                        | DIN 3852 <sup>7)</sup>           | M33 x 2; 18 deep             | 3                                    | X <sup>5)</sup>     |
| U                               | Bearing flushing                  | DIN 3852 <sup>7)</sup>           | M18 x 1.5; 12 deep           | 3                                    | Х                   |
| M <sub>A</sub> , M <sub>B</sub> | Operating pressure measurement    | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep           | 400                                  | X                   |
| Ms                              | Suction pressure measurement      | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep           | 30                                   | Х                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear




| 1 010                           |                                      |                                  |                            |                                      |                     |
|---------------------------------|--------------------------------------|----------------------------------|----------------------------|--------------------------------------|---------------------|
| Designation                     | Port for                             | Standard                         | Size <sup>3)</sup>         | Maximum pressure [bar] <sup>4)</sup> | State <sup>8)</sup> |
| B (A)                           | Service line<br>Fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 2 in<br>M20 x 2.5; 30 deep | 400                                  |                     |
| S                               | Suction line<br>Fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 4 in<br>M16 x 2; 24 deep   | 30                                   | 0                   |
| T <sub>1</sub>                  | Drain line                           | DIN 38527)                       | M42 x 2; 20 deep           | 3                                    | O <sup>5)</sup>     |
| T <sub>2</sub>                  | Drain line                           | DIN 3852 <sup>7)</sup>           | M42 x 2; 20 deep           | 3                                    | X <sup>5)</sup>     |
| U                               | Bearing flushing                     | DIN 3852 <sup>7)</sup>           | M18 x 1.5; 12 deep         | 3                                    | Х                   |
| M <sub>A</sub> , M <sub>B</sub> | Measuring operating pressure         | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep         | 400                                  | Х                   |
| M <sub>S</sub>                  | Measuring suction pressure           | DIN 38527)                       | M14 x 1.5; 12 deep         | 30                                   | X                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T<sub>1</sub> or T<sub>2</sub> must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear



| Designation                     | Port for                          | Standard                         | Size <sup>3)</sup>         | Maximum pressure [bar]4) | State <sup>8)</sup> |
|---------------------------------|-----------------------------------|----------------------------------|----------------------------|--------------------------|---------------------|
| B (A)                           | Service line fastening thread B/A | SAE J518 <sup>6)</sup><br>DIN 13 | 2 in<br>M20 x 2.5; 30 deep | 400                      |                     |
| S                               | Suction line fastening thread     | SAE J518 <sup>6)</sup><br>DIN 13 | 4 in<br>M16 x 2; 24 deep   | 30                       | 0                   |
| T <sub>1</sub>                  | Drain line                        | DIN 3852 <sup>7)</sup>           | M42 x 2; 20 deep           | 3                        | O <sup>5)</sup>     |
| T <sub>2</sub>                  | Drain line                        | DIN 3852 <sup>7)</sup>           | M42 x 2; 20 deep           | 3                        | X <sup>5)</sup>     |
| U                               | Bearing flushing                  | DIN 3852 <sup>7)</sup>           | M18 x 1.5; 12 deep         | 3                        | Χ                   |
| M <sub>A</sub> , M <sub>B</sub> | Measuring operating pressure      | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep         | 400                      | Χ                   |
| Ms                              | Measuring suction pressure        | DIN 3852 <sup>7)</sup>           | M14 x 1.5; 12 deep         | 30                       | Χ                   |

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 34 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- $_{5)}$  Depending on installation position,  $T_1$  or  $T_2$  must be connected (see also installation instructions on pages 32 and 33).
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
  - X = Plugged (in normal operation)

### Installation instructions

### General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

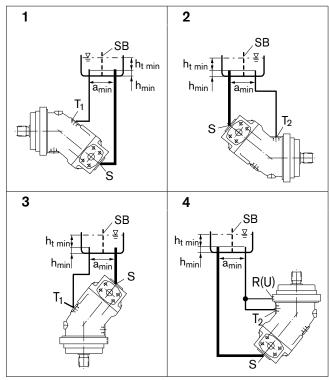
Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port  $(T_1, T_2)$ .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height  $h_S$  results from the overall loss of pressure; it must not, however, be higher than  $h_{S\,\text{max}} = 800\,\text{mm}$ . The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation and during cold start.


### Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

### Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.



| Installation position | Air bleed | Filling        |
|-----------------------|-----------|----------------|
| 1                     | _         | T <sub>1</sub> |
| 2                     | _         | T <sub>2</sub> |
| 3                     | _         | T <sub>1</sub> |
| 4                     | R (U)     | T <sub>2</sub> |