

RE-E 91604 Edition: 05.2016

Replaces: 06.2012

Axial piston variable motor A6VM Series 63

Europe

Features

- Robust motor with long service life
- Approved for very high rotational speeds
- High control range (can be swiveled to zero)
- High torque
- Variety of controls
- Optionally with flushing and boost-pressure valve mounted
- Optionally with integrated or mounted counterbalance valve
- Bent-axis design

- All-purpose high pressure motor
- Sizes 28: Nominal pressure 400 bar Maximum pressure 450 bar
- Sizes 250 to 1000: Nominal pressure 350 bar Maximum pressure 400 bar
- Open and closed circuits

Contents

Type code	2
Hydraulic fluids	5
Bearing	6
Shaft seal	6
Working pressure range	7
Technical data	8
HD – Proportional control, hydraulic	10
EP – Proportional control, electric	14
HZ – Two-point control, hydraulic	18
EZ – Two-point control, electric	20
HA – Automatic high-pressure related control	22
DA – Automatic control, speed related	28
Electric travel direction valve (for DA, HA.R)	30
Dimensions, sizes 28	31
Dimensions, sizes 250 to 1000	35
Connector for solenoids	47
Flushing and boost-pressure valve	48
Swivel angle indicator	50
Speed sensor	51
Installation instructions	52
Project planning notes	54
Safety instructions	55

2 **A6VM Series 63** | Axial piston variable motor Type code

Type code

01	02	0	3	04	05	06	6 0)7	08			09	10	11		12	13	14	15	16	17	18	19	20
	A6V			М						1		63	w		-	V							- -	
lvdr	' aulic fluid			•														-					· · ·	
01	Mineral of		d HF	D. H	FD f	or size	es 25	0 to	o 100)0 on	ly i	n cor	njunct	ion wi	th lon	g-life	bearin	gs "L"	(witho	ut cod	e)			
	HFB, HFC									28 (w				-		5		0						
		5											-	n con	unctic	on wit	h long	life b	earings	; "L")				E
\via	l piston ur	.i+																						
02	Bent-axis		ign.	varial	ole																			A6V
	1																		250	25		500	1000	
03	shaft bea	-		: (wit	hou	t code	2)												250 •	35		500 •	1000	
05	Long-life		-		nou	i coue	-)												•	•		•	•	
	1		ings																•	•		•	•	
	ating mod									000)														
04	Motor (p	lug-li	n mo	otor A	6VE	, see c	lata s	sne	et 91	.606)														М
	(NG)																						1	1
05	Geometr	ic di	splac	ceme	nt, s	ee pa	ge 8										2	8	250	35	5	500	1000	J
Cont	rol device																-1							
06	Proportio	onal	cont	rol, h	ydra	aulic									= 10 k				•	•		•	•	HD1
															= 25 k			•	•	•		•	•	HD2
														Δp_{St}	= 35 b	bar	· ·	-	•	•		٠	•	HD3
	Proportio	onal	cont	rol, e	lect	ric								U = 2			·	•	•	•		•	•	EP1
														U = 2	24 V		·	•	•	•		•	•	EP2
	Two-poin	it coi	ntrol	, hydı	rauli	С											-	-	•	•		•	•	HZ
																	–	•	-			-	-	HZ1
																	· ·	-	-	-		-	-	HZ3
	Two-poin	it coi	ntrol	, elec	tric									<i>U</i> = :					•	•		•	•	EZ1
														<u>U = 2</u>					•	•		•	•	EZ2
														U = 1				-	-	-		-	-	EZ3
	A								/:+					U = 2					-			-	-	EZ4
	Automati high-pres									pprox			sure in	crease	<u>;</u>		•	•	•	•		•	•	HA1
													se Δb	= 100	bar		-					-		
											-		·· 1						•	•		•	•	HA2
	Automati			•••														-	•			•	0	DA
	$p_{\rm St}/p_{\rm HD}$,	aulic t											-							
	$p_{ m St}/p_{ m HD}$	= 5/	100	_		aulic t						-1		T T -					-			-	-	DA1
						, circ		iire	CLION	valve	3 +	elect	.nc	$\frac{U}{U} = \frac{1}{2}$					-			-	-	DA2 DA3
	$p_{\rm St}/p_{\rm HD}$	- 9/	100		-	aulic t		di	rocti		lvo			U = .	24 V					-		_		DA3 DA4
	Pst/PHD	- 0/	100			ric tra						elect	ric	U = 1	12 \/			•	-			_	-	DA4 DA5
						x circ		in e	CIUI	varve				U = 2			-	•	_	-		_		DA5 DA6
	I													0 - 1										
	sure contr	-			-			י)										8	250	35		500	1000	
07	Without				-														•	•		•	•	
	Pressure	con	roi			settir	-	ida	+++		+								2)	2)		2)	2)	D
				_	-	aulic o aulic r			-	•		ortic	nal				+ '							E G
					iyur	auiic I	emot		Joint	oi, pr	op		lidi					-	•	•		•	•	L G

• = Available • = On request - = Not available

1) Specify response time damping when ordering (size 28)

2) 2nd pressure setting fitted as standard with version D (sizes 250 to 1000)

01	02	()3	04	05	5 06	07	08		09	10	11		12	13	14	15	16	17	18	19	20
	A6V			М					1	63	w		-	V								-
Over	rides for t	he I	IA1 a	and	HA2	contro	s			р					28	:	250	35	5	500	1000	
08	Without o	over	ride	(wit	hout	code)									•		•	•		٠	•	
	Hydraulic	ove	erride	e, re	emote	contro	l, prop	portio	nal						•		•	•		٠	•	Т
	Remote c	ontr	ol ele	ctri	c ove	rride, tv	vo-poii	nt				U = 2	12 V		•		-	-		-	-	U1
												U = 2	24 V		•		-	-		-	-	U2
	Electric o	verr	ide									U = 2	12 V		•		-	-		-	-	R1
	+ travel d	irec	tion	valv	e, ele	ectric						U = 2	24 V		•		-	-		-	-	R2
Serie	es																					
09	Series 6,	ind	ex 3																			63
Direc	tion of ro	tati	on																			
10	Viewed o	n dı	ive s	haft	t, bid	irection	al															w
Setti	ng ranges	for	disp	ace	men	t ³⁾									28	:	250	35	5	500	1000	
11	$V_{g \min} = 0$	to (D.7 V	g max	ĸ										•		-	-		-	-	
	$V_{g \min} = 0$	to ().4 V	g max	($V_{g \max}$	= $V_{\rm gr}$	_{nax} to ().8 V _{g r}	nax			-		•	•		•	•	1
	$V_{g \min} > 0.$	4 V	g max 1	to 0	.8 V _g	max		$V_{g \max}$	= V _{g r}	_{nax} to ().8 V _{gr}	nax			-		•	•		•	•	2
Seali	ng materia	al																				
12	FKM (fluc	oroe	lasto	mei	r)																	v
Drive	e shaft														28	:	250	35	5	500	1000	
13	Splined s	haf	t DIN	548	30										•		-	-		-	-	Α
															•	1	•	•		•	•	Z
	Parallel k	eye	d sha	ft D	01N 68	385									-		•	•		•	•	Р
Mou	nting flang	е													28	:	250	35	5	500	1000	
14	ISO 3019											4-ho	le		•		•	-		-	-	В
												8-ho	le		-		-	•		•	•	н
Port	plate for w	vorl	king l	ine	4)										28		250	35	5	500	1000	
15	SAE work					3 at rea	r					01		0	•		•	•	-	•	•	010
		-												7	•		•	•		•	•	017
	SAE work	ing	port	s A	and	3 latera	l, opp	osite				02		0	•		•	•		•	•	020
														7	•		•	•		•	•	027
	SAE work	ing	port	s A	and I	3 latera	l, opp	osite +	· rear			15		0	-		•	•		•	•	150
	Port plate											38		0	-		● ⁶⁾	-		_	-	380
	pressure a counter					nountin	g							8	_		• ⁶⁾	_		_	-	388
														<u> </u>	1		-					
	Valve (see			5)											1							
	Without v			.+	rocorr	ro volu-		ntad						0	-							
	Flushing						e, mou	nted						7	4							
	Counterb	alai	ice v	aive	mou	nted''								8	J							

• = Available • = On request - = Not available

- 5) Only possible in combination with HD, EP and HA control.
- 6) Counterbalance valve MHB32, please contact us.

³⁾ Please specify exact settings for $V_{g \min}$ and $V_{g \max}$ in plain text when ordering: $V_{g \min} = \dots \text{ cm}^3$, $V_{g \max} = \dots \text{ cm}^3$

⁴⁾ Fastening thread, metric

01	02	03	04	05	06	07	08		09	10	11		12	13	14	15	16	17	18	19	20)
	A6V		м					1	63	w		-	v								-	
Spee	d sensor (see pa	ge 51)											28		250	355	5	500	1000 ⁸⁾		
16	Without s	peed s	ensor	(with	out co	de)								٠		•	•		•	•	0	
Prepared for HDD speed sensor													•	•		•	-	F				
	HDD spee	d sens	or mo	unted))											•	•		•	-	н	
	Prepared	for DS	M/DS/	A spee	d sens	sor								٠		-	-		-	-	U	
	DSM/DSA	speed	senso	or mou	inted ⁹)								٠		-	-		-	-	v	
Swiv	el angle se	nsor (s	see pa	ge 50)										28		250	355	5	500	1000	,	
17	Without s	wivel a	ngle s	ensor										٠		• • •		-				
	Optical sv	vivel a	ngle se	ensor										-		• • •			•	v		
	Electric sv	wivel a	ngle s	ensor										-		•	•		•	•	E	
Conr	ector for s	olenoi	ds (se	e page	e 47)									28		250 to 1000						
18	Without c	onnect	or (wi	ithout	solend	oid, wi	th hyc	Iraulio	contr	rol onl	y)			٠				-			0	٦
	(sizes 250) to 10	00)				-							-				٠				
	DEUTSCH	molde	ed con	nector	-, 2-pir	n – wit	hout s	uppre	essor	diode				٠				-			Р	
	HIRSCHM	ANN co	onnect	tor – v	vithou	t supp	ressor	diod	е					-				٠				
Begiı	nning of co	ntrol												28	ŧ	250	355	5	500	1000		
19	At $V_{g \min}$ (standa	rd for	HA)										٠		•	•		•	•	Α	
	At $V_{g max}$ (standa	rd for	HD, H	Z, EP,	EZ, D	A)							٠		•	•		•	•	В	٦
Stan	ndard / special version																					

20	Standard version	
	Standard version with installation variants, e.g. T ports open and closed contrary to standard	-Y
	Special version	-S

• = Available • = On request ▲ = Not for new projects - = Not available

Notice

- Note the project planning notes on page 54.
- In addition to the type code, please specify the relevant technical data when placing your order.

⁷⁾ Please contact us.

 ⁸⁾ Specify type code separately for sensor in accordance with data sheet 95132 - DSM or 95133 - DSA, 95135 - HDD and observe the requirements for the electronics.

Hydraulic fluids

The A6VM variable motor is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ► 90221: Environmentally acceptable hydraulic fluids
- 90222: Fire-resistant, water-free hydraulic fluids (HFDR/ HFDU)
- 990223: Fire-resistant, water-containing hydraulic fluids (HFC, HFB)
- 90225: Axial piston units for operation with water-free and water-containing fire-resistant hydraulic fluids (HFDR, HFDU, HFB, HFC).

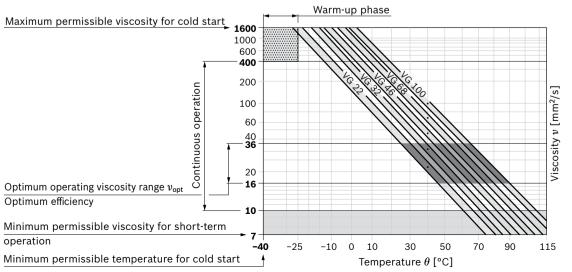
The variable motor A6VM is not suitable for operation with HFA fluids. If operating with HFB-, HFC- and HFD or environmentally acceptable hydraulic fluids, the limitations regarding technical data or other seals must be observed.

Viscosity and temperature of hydraulic fluids

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see selection diagram).

Notice


At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend the use of a flushing and boost-pressure valve (see page 48).

	Viscosity	Temperature	Comment
Cold start ¹⁾	ν _{max} ≤1600 mm²/s	θ _{St} ≥ -40 °C	$t \le 3$ min, $n \le 1000$ rpm, without load $p \le 50$ bar
Permissible temper	rature difference	<i>ΔT</i> ≤ 25 K	between axial piston unit and hydraulic fluid in the system
Warm-up phase	$v = 1600 \text{ to } 400 \text{ mm}^2/\text{s}$	θ = -40 °C to -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C to +103 °C	Note the permissible temperature range of the shaft seal mea- sured at port T (ΔT = approx. 12 K between the bearing/shaft seal and port T)
	$v_{opt} = 36 \text{ to } 16 \text{ mm}^2/\text{s}$		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{\min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \min, p < 0.3 \times p_{nom}$

1) For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C).

Selection diagram

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (90 °C to maximum 103 °C, measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Effect of case pressure on beginning of control

An increase in case pressure affects the beginning of control of the variable motor when using the following control options:

- ► HD, HA.T3: increase
- ► HD, EP, HA, HA.T (Sizes 250 to 1000): increase
- ► DA: decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control: HA.R and HA.U, EP, HA

The factory settings for the beginning of control are made at $p_{\rm abs}$ = 2 bar (size 28) and $p_{\rm abs}$ = 1 bar (sizes 250 to 1000) case pressure.

Flow direction

Direction of rotation,	viewed on drive shaft
clockwise	counter-clockwise
A to B	B to A

Bearing

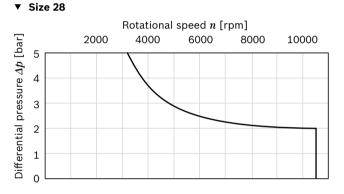
Long-life bearing, NG250-1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.

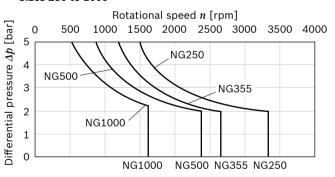
Flushing

Flushing flow (recommended)

Size	250	355	500	1000
$q_{ m v flush}$ [l/min]	10	16	16	16

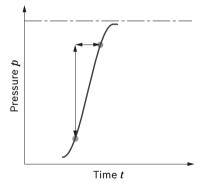

To reduce the leakage temperature, external case flushing is possible via port ${\bf U}$ or internally via a flushing valve.

Shaft seal

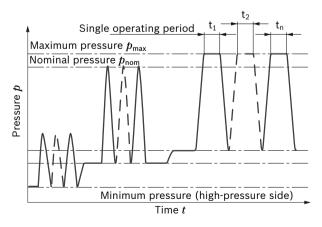

Permissible pressure loading

The service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary (t < 0.1 s) pressure peaks of up to 10 bar are allowed. Case pressures of a continuous 2 bar maximum are permitted to be able to utilize the entire speed range. Higher case pressures are permissible at lower rotational speeds (see diagram). The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure.

The case pressure must be equal to or higher than the ambient pressure.

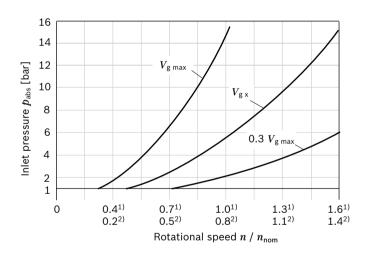


The FKM shaft seal ring may be used for leakage temperatures from -25 °C to +115 °C. For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).


Working pressure range

Pressure at working port A or B			Definition
Nominal pressure $p_{\sf nom}$	NG28	400 bar	The nominal pressure corresponds to the maximum design pressure.
	NG250 to 1000	350 bar	
Maximum pressure $p_{\scriptscriptstyle \sf max}$	NG28	450 bar	The maximum pressure corresponds to the maximum working pressure
_	NG250 to 1000	400 bar	within the single operating period. The sum of the single operating
Single operating period		10 s	— periods must not exceed the total operating period.
Total operating period		300 h	
Minimum pressure (high-pressure	e side)	25 bar	Minimum pressure at the high-pressure side (A or B) required to prevent damage to the axial piston unit.
Minimum pressure – operation as	a pump (inlet)	See diagram below	To avoid damage to the axial piston motor during operation as a pump (change of the high-pressure side at constant direction of rotation, e.g. during braking processes) a minimum pressure has to be ensured at the working port (inlet). The minimum required pressure is dependent on the rotational speed and displacement of the axial piston unit (see char- acteristic curve).
Summation pressure p_{Su} (pressure	A + pressure B)	700 bar	The summation pressure is the sum of the pressures at the ports for the working lines (${\bf A}$ and ${\bf B})$
Rate of pressure change $R_{A max}$			Maximum permissible rate of pressure build-up and reduction during a
with built-in pressure relief valv	/e	9000 bar/s	pressure change across the entire pressure range.
without pressure relief valve		16000 bar/s	

▼ Rate of pressure change R_{A max}



Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

Minimum pressure – operation as a pump (inlet)

This diagram is only valid for the optimum viscosity range of v_{opt} = 36 to 16 mm²/s.

If the above mentioned conditions cannot be ensured please contact us.

Notice

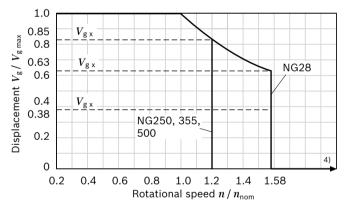
Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

¹⁾ For size 28

²⁾ For sizes 250 to 1000

Technical data

Size		NG		28	250	355	500	1000
Geometric displacement, p	er revolution ¹⁾	V_{gmax}	cm ³	28.1	250	355	500	1000
		V_{gmin}	cm ³	0	0	0	0	0
		Vgx	cm ³	18	205	300	417	1000
Maximum rotational	at $V_{g max}$	$n_{\sf nom}$	rpm	5550	2700	2240	2000	1600
speed ²⁾ (while adhering to the maximum permissible	n_{\max}	rpm	8750	3300	2650	2400	1600	
inlet flow)	where $V_{g 0}$	n_{max}	rpm	10450	3300	2650	2400	1600
Inlet flow ³⁾	$q_{ m vmax}$	l/min	156	675	795	1000	1600	
Torque	at $V_{ m gmax}$ and $\varDelta p$ = 400 bar	Т	Nm	179	-	-	-	-
	at $V_{\rm gmax}$ and Δp = 350 bar	Т	Nm	157	1391	1978	2785	5571
Rotary stiffness	$V_{\rm gmax}$ to $V_{\rm g}/2$	c_{\min}	kNm/rad	6	60	75	115	281
	$V_{\rm g}/2$ to 0 (interpolated)	c_{\min}	kNm/rad	18	181	262	391	820
Moment of inertia for rotary	/ group	J _{TW}	kgm²	0.0014	0.061	0.102	0.178	0.55
Maximum angular accelerat	α	rad/s²	47000	10000	8300	5500	4000	
Case volume	V	1	0.5	3.00	5.0	7.0	16.0	
Weight approx.	m	kg	16	100	170	210	430	


Speed range

The minimum rotational speed n_{\min} is not restricted. Please consult us regarding applications requiring uniformity of the rotatory motion at low speeds.

Notice

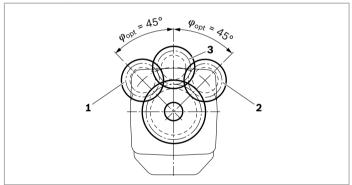
- Theoretical values, without efficiency and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Permissible displacement in relation to rotational speed

Determining t	the ope	erat	ing characteristi	cs	
Inlet flow	q_{v}	=	$\frac{V_{g} \times n}{1000 \times \eta_{v}}$		[l/min]
Rotational speed	n	=	$\frac{q_{\rm v} \times 1000 \times \eta_{\rm v}}{V_{\rm g}}$		[rpm]
Torque	Т	=	$\frac{V_{\rm g} \times \Delta p \times \eta_{\rm hm}}{20 \times \pi}$		[Nm]
Power	Р	=	$\frac{2 \pi \times T \times n}{60000}$	$= \frac{q_{\rm v} \times \Delta p \times \eta_{\rm t}}{600}$	[kW]

Key

- V_g Displacement per revolution [cm³]
- Δp Differential pressure [bar]
- *n* Rotational speed [rpm]
- η_v Volumetric efficiency
- η_{hm} Hydraulic-mechanical efficiency
- η_{t} Total efficiency ($\eta_{t} = \eta_{v} \times \eta_{hm}$)
- The minimum and maximum displacement can be steplessly adjusted, see type code on page 3. (standard setting for sizes 250 to 1000 if ordering code is missing:
 - $V_{\text{g min}} = 0.2 \times V_{\text{g max}}, V_{\text{g max}} = V_{\text{g max}}$).
- 2) The values are applicable:
 - for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s
 - with hydraulic fluid based on mineral oils
- 3) Torque without radial force, with radial force, see page 9.
- 4) Values in this range on request


Size		NG		28	28	250	250	355	355	500	500	1000	1000
Drive shaft		Code		А	Z	Z	Р	Z	Р	Z	Р	Z	Р
	Splined shaft			W30	W25	W50	-	W60	-	W70	-	W90	-
	Keyed shaft	ø	mm	-	-	-	50	-	60	-	70	-	90
Maximum radial force	L _{Ea}	F _{q max}	Ν	4838	6436	12001)	1200 ¹⁾	1500 ¹⁾	1500 ¹⁾	19001)	1900 ¹⁾	2600 ¹⁾	26001)
at distance a (from shaft collar)		a	mm	17.5	14.0	41.0	41.0	52.5	52.5	52.5	52.5	67.5	67.5
Maximum torq	ue at $F_{q max}$	$T_{q \max}$	Nm	179	179	2)	2)	2)	2)	2)	2)	2)	2)
Maximum differential and F _q		${\it \Delta p_{qmax}}$	bar	400	400	2)	2)	2)	2)	2)	2)	2)	2)
Maximum axial force		+ F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0
at standstill or depres- Fax±====================================		- F _{ax max}	N	315	315	1200	1200	1500	1500	1900	1900	2600	2600
Permissible axial force pressure	per bar working	+ $F_{\rm ax \ perm/bar}$	N/bar	4.6	4.6	2)	2)	2)	2)	2)	2)	2)	2)

Permissible radial and axial forces of the drive shafts

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

▼ Toothed gear output drive

 ${\bf 1}$ "Counter-clockwise" rotation. Pressure at port ${\bf B}$

 ${\bf 2}$ "Clockwise" rotation, pressure at port ${\bf A}$

 ${\bf 3} \ {\rm Bidirectional} \ {\rm direction} \ {\rm of} \ {\rm rotation}$

Notice

- The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in direction -F_{ax} is to be avoided as the lifetime of the bearing is reduced.
- Special requirements apply in the case of belt drives.
 Please contact us.

When at standstill or when axial piston unit working in depressurized conditions. Higher forces are permissible under pressure, please contact us.

²⁾ Please contact us.

HD – Proportional control, hydraulic

The proportional hydraulic control provides infinite adjustment of the displacement. The control is proportional to the pilot pressure at port \mathbf{X} .

HD1, HD2, HD3

- Beginning of control at V_{g max} (maximum torque, minimum rotational speed at minimum pilot pressure).
- End of control at V_{g min} (minimum torque, maximum permissible rotational speed, at maximum pilot pressure).

Notice

- Maximum permissible pilot pressure: p_{st} = 100 bar
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us. Please note that at port G up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.
- Specify the desired beginning of control in plain text when ordering, e.g.: beginning of control at 10 bar.
- The beginning of control and the HD-characteristic curve are influenced by case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 7) and thus a parallel displacement of the characteristic curve.
- A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

HD1, HD2 without damping.

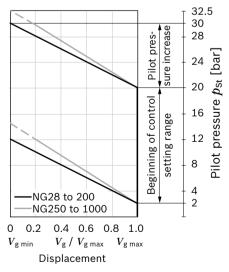
HD.D, HD.E with throttle pin on both sides, symmetrical (see table)

Option for size 28

HD1, HD2, with throttle pin on both sides, symmetrical (see table)

Throttle pin overview

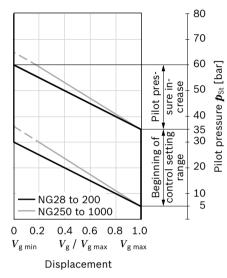
Size	28	55	80	107	140	160	200
Groove size [mm]	0.3	0.45	0.45	0.55	0.55	0.55	0.65


Standard for sizes 250 to 1000

HD1, HD2 and HD3 with orifice (ø1.2 mm) HD.D, HD.E, HP.G with adjustable response time limiting valve with orifice (ø1.2 mm)

HD1, pilot pressure increase Δp_{St} = 10 bar

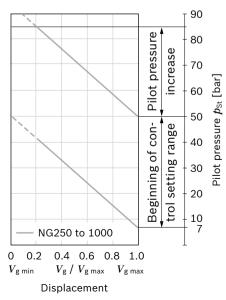
A pilot pressure increase of 10 bar at port **X** will cause a reduction in displacement from $V_{g max}$ to 0 cm³ (size 28) or from $V_{g max}$ to 0.2 $V_{g max}$ (sizes 250 to 1000). Beginning of control, setting range 2 to 20 bar Standard setting: beginning of control at 3 bar (end of control at 13 bar)


▼ Characteristic curve

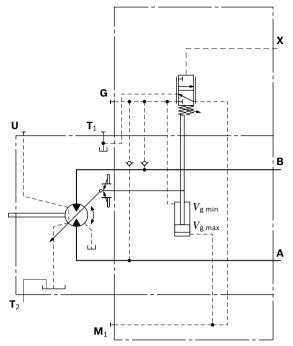
HD2, pilot pressure increase Δp_{St} = 25 bar

A pilot pressure increase of 25 bar at port **X** results in a reduction in displacement from $V_{g max}$ to 0 cm³ (size 28) or from $V_{g max}$ to 0.2 $V_{g max}$ (sizes 250 to 1000). Beginning of control, setting range 5 to 35 bar Standard setting: beginning of control at 10 bar (end of control at 35 bar)

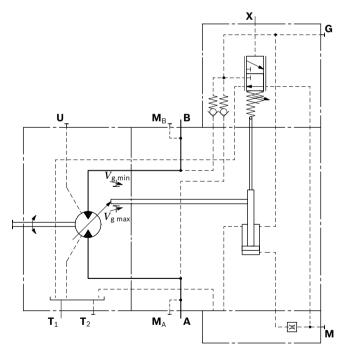
Characteristic curve



HD3, pilot pressure increase $\Delta p_{ m St}$ = 35 bar


(sizes 250 to 1000)

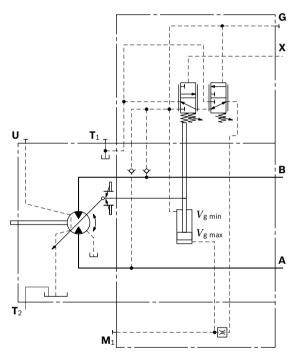
A pilot pressure increase of 35 bar at port **X** results in a reduction in displacement from $V_{g max}$ to 0.2 $V_{g max}$. Beginning of control, setting range 7 to 50 bar Standard setting: beginning of control at 10 bar (end of control at 45 bar)


Characteristic curve

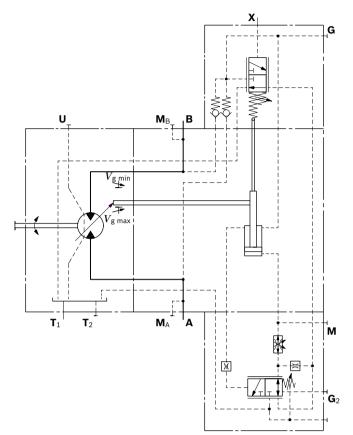
Circuit diagram HD1, HD2, size 28

Circuit diagramHD1, HD2, HD3, sizes 250 to 1000

12 **A6VM Series 63** | Axial piston variable motor HD – Proportional control, hydraulic


HD.D Pressure control, fixed setting

The pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle. The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant. Size 28:

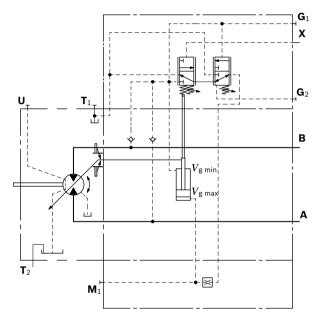

Setting range of the pressure control valve 80 to 400 bar Sizes 250 to 1000:

Setting range of the pressure control valve 80 to 350 bar

▼ Circuit diagram HD.D, size 28

▼ Circuit diagram HD.D, sizes 250 to 1000

HD.E pressure control, hydraulic override, two-point, size 28


The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port G₂:

*p*_{St} = 20 to 50 bar

When ordering, please specify the 2nd pressure setting in plain text.

▼ Circuit diagram HD.E

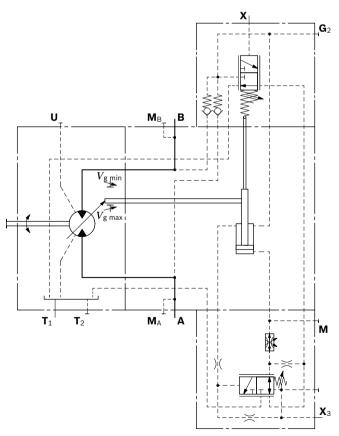
Sizes 250 to 1000 (HD.D)

Pressure control with 2nd pressure setting for HD.D provided as standard (see page 12).

The pressure control setting can be overridden by applying an external pilot pressure at port \mathbf{G}_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port \mathbf{G}_2 :

 $p_{\rm St} \ge 130$ bar

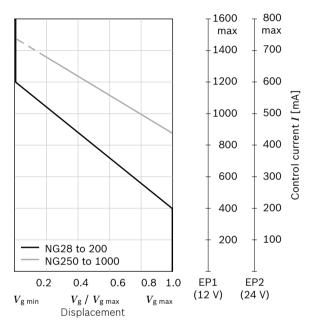

When ordering, please specify the 2nd pressure setting in plain text.

HD.G pressure control, remote controlled, sizes 250 to 1000

When the pressure command value is reached, the remote controlled pressure control continually regulates the motor to maximum displacement $V_{g max}$. A pressure relief valve (not included in the scope of delivery), which is located separately from the motor and which is connected to port **X**₃, assumes the task of controlling the internal pressure cut-off valve. So long as the pressure command value has not been reached, pressure is evenly applied to the valve from both sides in addition to the spring force, and the valve remains closed. The pressure command value is between 80 bar and 350 bar. When the pressure command value is will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{g max}$.

The differential pressure at the DRG control valve is set as standard to 25 bar. As a separate pressure relief valve, we recommend: DBD 6 (hydraulic) as per data sheet 25402; maximum line length should not exceed 2 m.

Circuit diagram HD.G



EP – Proportional control, electric

The electric control with proportional solenoid (size 28) or proportional valve (sizes 250 to 1000) enable the displacement to be steplessly adjusted. Control is proportional to the electric control current applied to the solenoid. Sizes 250 to 1000 require an external pilot oil supply at port **P** with a pressure of $p_{min} = 30$ bar ($p_{max} = 100$ bar).

- Beginning of control at V_{g max} (maximum torque, minimum rotational speed at minimum control current)
- End of control at V_{g min} (minimum torque, maximum permissible rotational speed at maximum control current)

Characteristic curve

Notice

The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures at port G, please contact us.

Please note that at port ${\bf G}$ up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.

- The following only needs to be noted for sizes 250 to 1000:
 - The beginning of control and the EP characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

EP1, EP2 without damping.

EP.D, EP.E with throttle pin on both sides, symmetrical (see table)

Option for size 28

EP1, EP2, with throttle pin on both sides, symmetrical (see table)

Throttle pin overview

Size	28		
Groove size [mm]	0.3		

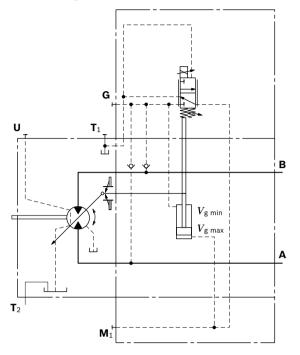
Standard for sizes 250 to 1000

EP1, EP2 with orifice (ø1.2 mm)

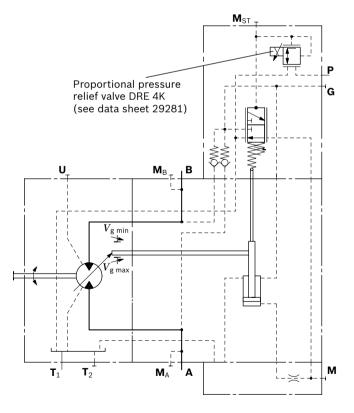
EP.D, EP.E, EP.G with adjustable response time limiting valve

Technical data, solenoid, size 28	EP1	EP2		
Voltage	12 V (±20%)	24 V (±20%)		
Control current				
Beginning of control	400 mA	200 mA		
End of control	1200 mA	600 mA		
Current limit	1.54 A	0.77 A		
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω		
Dither				
Frequency	100 Hz	100 Hz		
minimum oscillation range ¹⁾	240 mA	120 mA		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				

Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.


Further information can also be found on the internet at www.boschrexroth.de/mobilelektronik.

Technical data, proportional valve, sizes 250 to 1000	EP1	EP2			
Voltage	12 V (±20%)	24 V (±20%)			
Control current Start of control at $V_{g max}$	900 mA ¹⁾	450 mA ¹⁾			
End of control at $V_{g min}$	approx. 1360 mA	approx. 680 mA			
Current limit	2.2 A	1.0 A			
Nominal resistance (at 20 °C)	2.4 Ω	12 Ω			
Duty cycle	100%	100%			
Type of protection: see connector version page 47					


See also proportional pressure reducing valve DRE 4K (data sheet 29281 – proportional pressure reducing valve)

1) Setting

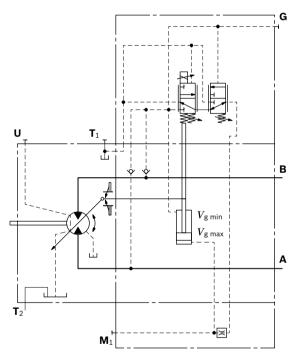
▼ Circuit diagram EP1, EP2, size 28

▼ Circuit diagram EP1, EP2, sizes 250 to 1000

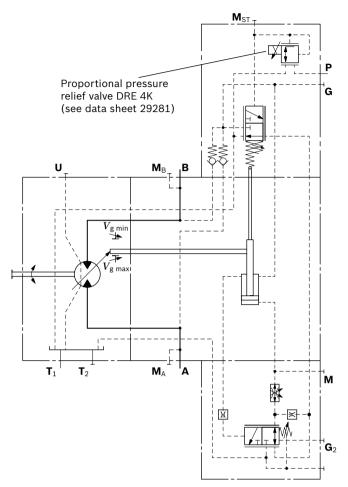
16 **A6VM Series 63** | Axial piston variable motor EP – Proportional control, electric

EP.D pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger angle.


The increase in displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

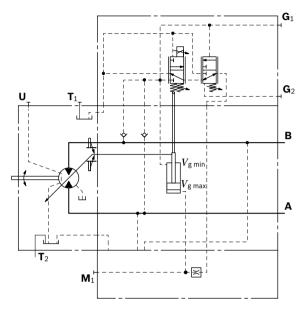
size 28:


Setting range of the pressure control valve 80 to 400 bar sizes 250 to 1000:

Setting range of the pressure control valve 80 to 350 bar

▼ Circuit diagram EP.D, size 28

▼ Circuit diagram EP.D, sizes 250 to 1000



EP.E pressure control, hydraulic override, two-point, size 28

The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting realized. Necessary pilot pressure at port G_2 : p_{St} = 20 to 50 bar

When ordering, please specify the 2nd pressure setting in plain text.

Circuit diagram EP.E

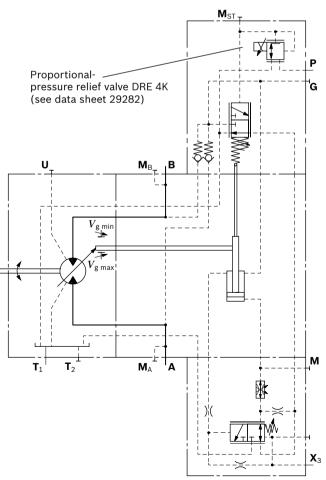
Sizes 250 to 1000 (EP.D)

Pressure control with 2nd pressure setting for EP.D provided as standard (see page 16).

The pressure control setting can be overridden by applying an external pilot pressure at port G_2 , realizing a 2nd pressure setting.

Necessary pilot pressure at port \mathbf{G}_2 :

 $p_{St} \ge 100 \text{ bar}$

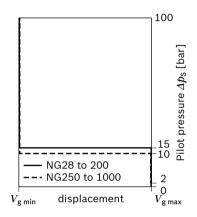

When ordering, please specify the 2nd pressure setting in plain text.

EP.G pressure control, remote controlled, sizes 250 to 1000

When the pressure command value is reached, the remote controlled pressure control continually regulates the motor to maximum displacement $V_{g max}$. A pressure relief valve (not included in the scope of delivery), which is located separately from the motor and which is connected to port **X**₃, assumes the task of controlling the internal pressure cut-off valve. So long as the pressure command value has not been reached, pressure is evenly applied to the valve from both sides in addition to the spring force, and the valve remains closed. The pressure command value is between 80 bar and 350 bar. When the pressure command value is reached at the separate pressure-relief valve, this will open, reliving the pressure on the spring side to the reservoir. The internal control valve switches and the motor swivels to maximum displacement $V_{g max}$.

The differential pressure at the DRG control valve is set as standard to 25 bar. As a separate pressure relief valve, we recommend: DBD 6 (hydraulic) as per data sheet 25402; maximum line length should not exceed 2 m.

Circuit diagram EP.G



HZ – Two-point control, hydraulic

The two-point hydraulic control allows the displacement to be set to either $V_{g \min}$ or $V_{g \max}$ by switching the pilot pressure at port **X** on or off.

- Position at V_{g max} (without pilot pressure, maximum torque, minimum rotational speed)
- Position at V_{g min} (with pilot pressure > 15 bar for size 28 and 10 bar for sizes 250 to 1000 switched on, minimum torque, maximum permissible rotational speed)

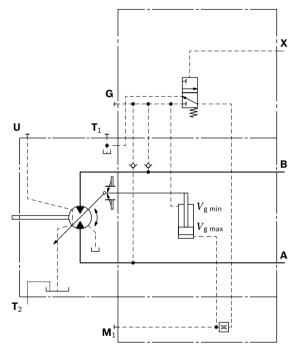
Characteristic curve

Notice

- Maximum permissible pilot pressure: 100 bar
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us. Please note that at port G up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.
- A leakage flow of maximum 0.3 l/min can occur at port X due to internal leakage (working pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

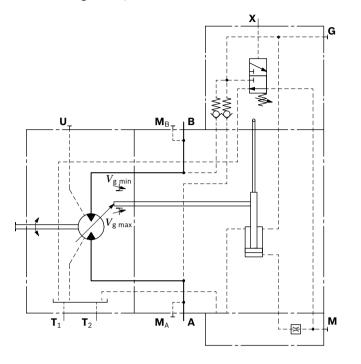
Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed. **Standard for sizes 28, 140 to 200**


HZ1 with throttle pin on both sides, symmetrical (see table)

Throttle pin overview

Size	28		
Groove size [mm]	0.30		


Standard for sizes 250 to 1000 with orifice (ø1.2 mm)

▼ Circuit diagram HZ1, size 28

Axial piston variable motor | **A6VM Series 63** 19 HZ – Two-point control, hydraulic

▼ Circuit diagram HZ, sizes 250 to 1000

EZ – Two-point control, electric

The two-point electric control allows the displacement to be set to either $V_{\rm g\ min}$ or $V_{\rm g\ max}$ by switching the electric current on or off to a switching solenoid (size 28) or to an on/off valve (sizes 250 to 1000).

Notice

The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us.

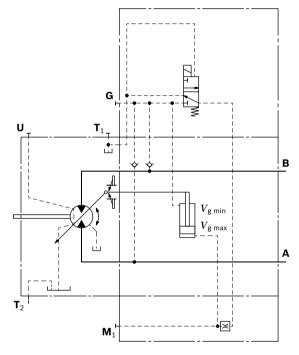
Please note that at port ${\bf G}$ up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed. **Standard for sizes 28**

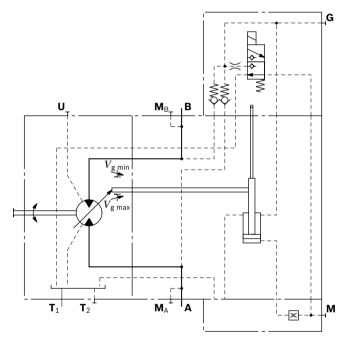
EZ1, EZ2 with throttle pin on both sides, symmetrical (see table)

Throttle pin overview


Size	28	55	80	107	140	160	200
Groove size [mm]	0.30	0.30	0.30	0.30	0.55	0.55	0.65

Standard for sizes 250 to 1000 with orifice (ø1.2 mm)

Technical data, solenoid with ø37, sizes 28	EZ1	EZ2
Voltage	12 V (±20%)	24 V (±20%)
Position $V_{g max}$	de-energized	de-energized
Position $V_{g \min}$	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum active current required	1.32 A	0.67 A
Duty cycle	100%	100%
Type of protection: see connector ve	rsion page 47	


Type of protection: see connector version page 47

▼ Circuit diagram EZ1, EZ2, size 28

Technical data, on/off valve, sizes 250 to 1000	EZ1	EZ2		
Voltage	12 V (±20%)	24 V (±20%)		
Position $V_{g max}$	de-energized	de-energized		
Position $V_{g \min}$	energized	energized		
Nominal resistance (at 20 °C)	6 Ω	23 Ω		
Nominal power	26 W	26 W		
Minimum active current required	2 A	1.04 A		
Duty cycle	100%	100%		
Type of protection: see connector version page 47				

▼ Circuit diagram EZ1, EZ2, sizes 250 to 1000

HA – Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the working pressure.

The displacement of the A6VM motor with HA control is $V_{\rm g\ min}$ (maximum rotational speed and minimum torque). The control device measures internally the working pressure at **A** or **B** (no control line required) and upon reaching the set beginning of control, the controller swivels the motor with increasing pressure from $V_{\rm g\ min}$ to $V_{\rm g\ max}$. The displacement is modulated between $V_{\rm g\ min}$ and $V_{\rm g\ max}$ depending on the load.

HA1, HA2

- Beginning of control at V_{g min} (minimum torque, maximum rotational speed)
- End of control at V_{g max} (maximum torque, minimum rotational speed)

Notice

- ► For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, a working pressure of at least 30 bar is necessary in A (B). If a control operation is performed at a working pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G using an external check valve. For lower pressures, please contact us. Please note that at port G up to Please note that at port G up to 450 bar (size 28) or 400 bar (sizes 250 to 1000) can occur.
- The beginning of control and the HA characteristic curve are influenced by the case pressure. An increase in the case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve. Only for HA1T (size 28) and for HA1, HA2 and HA.T (sizes 250 to 1000).
- A leakage flow of maximum 0.3 l/min occurs at port X (working pressure > pilot pressure). To avoid a build-up of pilot pressure, pressure must to be relieved from port X to the reservoir. Only for HA.T control.

Response time damping

The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

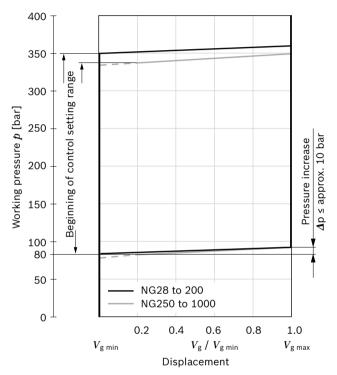
Standard for size 28

HA with throttle pin on one side, throttle from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (see table)

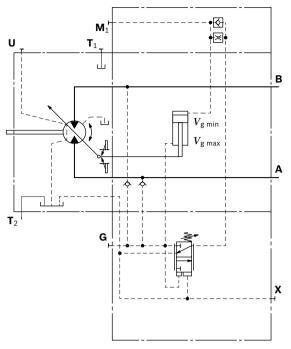
▼ Throttle pin overview

Size	28	
Groove size [mm]	0.3	

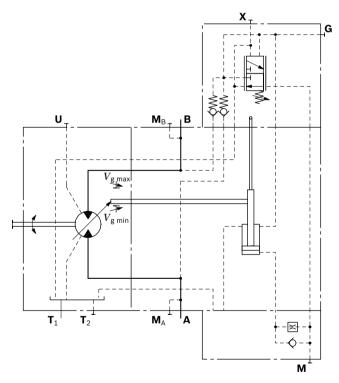
Standard for sizes 250 to 1000 with orifice (ø1.2 mm)


HA1 with minimum pressure increase, positive control

A working pressure increase of $\Delta p \leq approx$. 10 bar results in an increase in displacement from $V_{g min}$ to $V_{g max}$. Size 28:


Setting range of the pressure control valve 80 to 350 bar Sizes 250 to 1000:

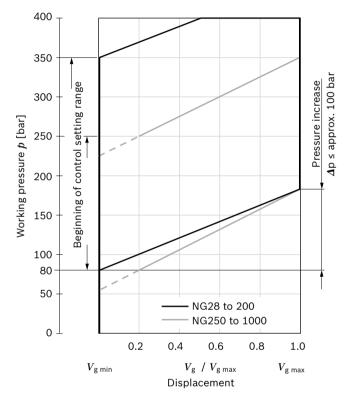
Setting range of the pressure control valve 80 to 340 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 300 bar.


▼ Characteristic curve HA1

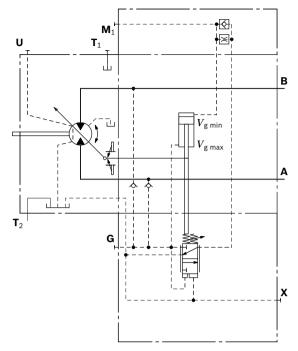
▼ Circuit diagram HA1, size 28

▼ Circuit diagram HA1, sizes 250 to 1000

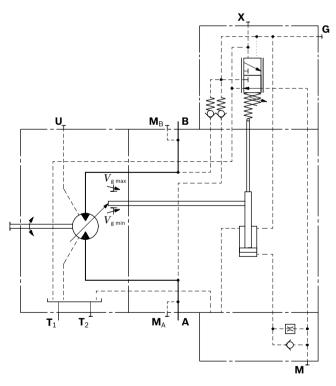
24 **A6VM Series 63** | Axial piston variable motor HA – Automatic high-pressure related control


HA2 with pressure increase, positive control

A working pressure increase of $\Delta p \leq approx$. 100 bar results in an increase in displacement from $V_{g min}$ to $V_{g max}$. Size 28:


Setting range of the pressure control valve 80 to 350 bar Sizes 250 to 1000:

Setting range of the pressure control valve 80 to 250 bar Please state the desired beginning of control in plain text when ordering, e.g.: beginning of control at 200 bar.

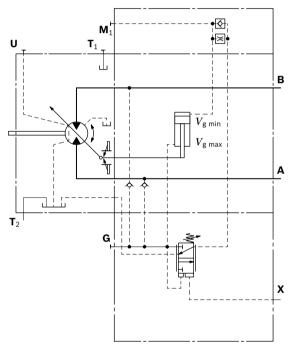

▼ Characteristic curve HA2

▼ Circuit diagram HA2, size 28

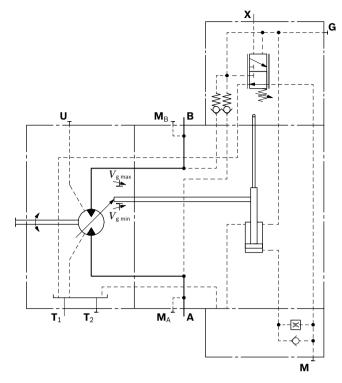
▼ Circuit diagram HA2, sizes 250 to 1000

HA.T Hydraulic override, remote control, proportional

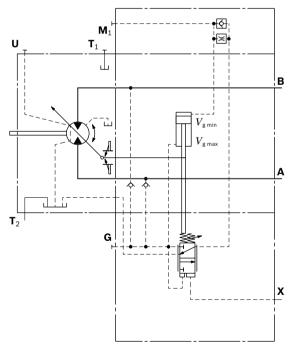
With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port **X**. For every 1 bar of pilot pressure, the beginning of control is reduced by 17 bar (size 28) or 9 bar (sizes 250 to 1000).


Example (size 28):

Settings for the beginning of control	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Beginning of control at	300 bar	130 bar


Notice

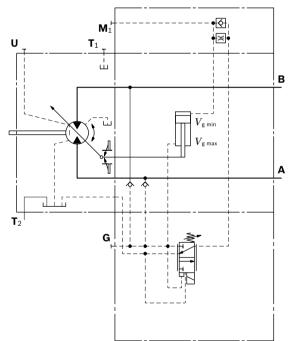
Maximum permissible pilot pressure 100 bar.


▼ Circuit diagram HA1T, size 28

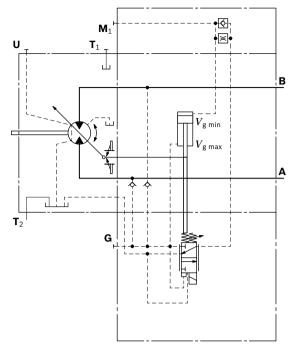
▼ Circuit diagram HA1T, sizes 250 to 1000

▼ Circuit diagram HA2T, size 28

26 A6VM Series 63 | Axial piston variable motor HA – Automatic high-pressure related control


HA.U1, HA.U2 electric override, two-point, size 28

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.


The beginning of control can be set between 80 and 300 bar (specify required setting in plain text when ordering).

Technical data, solenoid with Ø45	U1	U2			
Voltage	12 V (±20%)	24 V (±20%)			
No override	de-energized	de-energized			
Position V _{g max}	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum active current required	1.5 A	0.75 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 47					

▼ Circuit diagram HA1.U1, HA1.U2

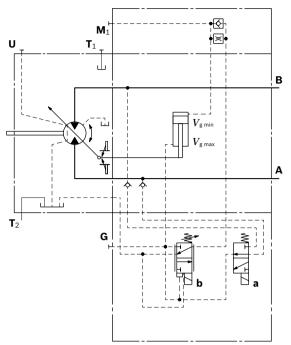
▼ Circuit diagram HA2.U1, HA2.U2

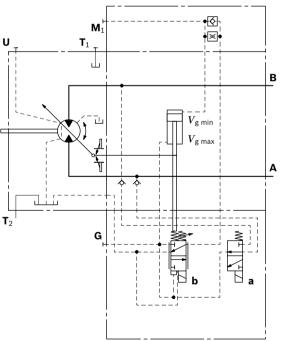
HA.R1, HA.R2 electric override, travel direction valve electric, size 28

With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid **b**. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (**A** or **B**) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e.g. -travel drive during a downhill operation). This thereby prevents undesired swiveling of the variable motor to a larger displacement (jerky deceleration and/or braking characteristics).

Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the compression spring or the switching solenoid **a** (see page 30).


Electric override


Technical data, solenoid b with ø45	R1	R2			
Voltage	12 V (±20%)	24 V (±20%)			
No override	de-energized	de-energized			
Position $V_{g max}$	energized	energized			
Nominal resistance (at 20 °C)	4.8 Ω	19.2 Ω			
Nominal power	30 W	30 W			
Minimum active current required	1.5 A	0.75 A			
Duty cycle	100%	100%			
Type of protection: see connector version page 47					

Travel direction valve, electric

Technical data, solenoid a with ø37	R1	R2
Voltage	12 V (±20%)	24 V (±20%)
Direction of rotation Working pressure in		
counter-clockwise B	energized	energized
clockwise A	de-energized	de-energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum active current required	1.32 A	0.67 A
Duty cycle	100%	100%
Type of protection: see connector version	n page 47	

▼ Circuit diagram HA1.R1, HA1.R2

Circuit diagram HA2.R1, HA2.R2

DA – Automatic control, speed related

The variable motor A6VM with automatic speed-related control is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control. A drive speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the working pressure, regulates the swivel angle of the hydraulic motor.

Increasing drive speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher rotational speed), depending on the working pressure.

If the working pressure exceeds the pressure command value of the controller, the variable motor swivels to a larger displacement (higher torque, lower rotational speed).

Pressure ratio p_{St}/p_{HD} = 3/100, 5/100, 8/100

DA control is only suitable for certain types of travel drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Our Sales department will provide you detailed information.

Notice

The beginning of control and the DA characteristic curve are influenced by case pressure. An increase in the case pressure causes a decrease / reduction in the beginning of control (see page 6) and thus a parallel displacement of the characteristic curve.

Response time damping

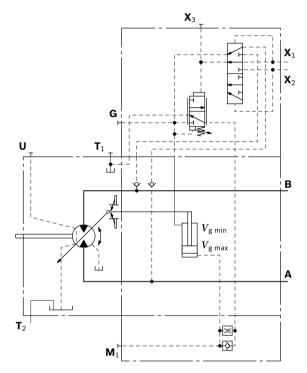
The response time damping impacts the pivot behavior of the motor and consequently the machine response speed.

Standard for size 28

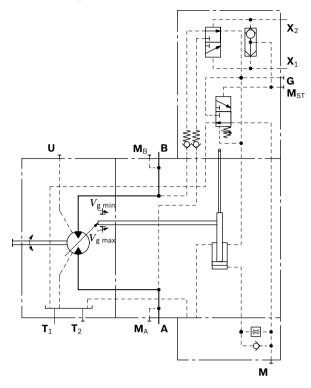
DA with throttle pin on one side, throttle from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (see table)

▼ Throttle pin overview

Size	28
Groove size [mm]	0.30


Standard for sizes 250 to 1000 with orifice (ø1.2 mm)

DA, DA1, DA4 hydraulic travel direction valve,


Dependent on the direction of rotation (travel direction), the travel direction valve is switched by using pilot pressures X_1 or X_2 . The maximum permissible pilot pressure for sizes 250 to 1000 is p_{st} = 25 bar. Momentary (t < 0.1 s) pressure peaks of up to 40 bar are permitted.

Direction of rotation	Working pressure in	Pilot pressure in
clockwise	Α	X ₁
counter-clockwise	В	X ₂

▼ Circuit diagram DA1, DA4, size 28

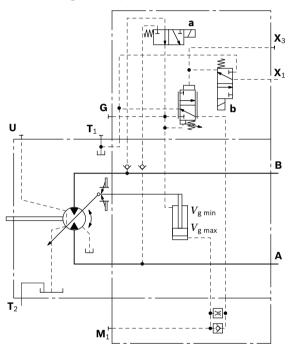
▼ Circuit diagram DA, sizes 250 to 1000

DA2, DA3, DA5, DA6 electric travel direction value + electric $V_{\rm g\ max}$ -circuit,

size 28

Depending on the direction of rotation (direction of travel), the travel direction valve is actuated through the compression spring or the switching solenoid **a**.

When switching solenoid **b** is energized, the control can be overridden and the motor can be swiveled to maximum displacement (high torque, lower rotational speed) (electric $V_{g max}$ -circuit).


Travel direction valve, electric

Technical data, solenoid a with ø37	DA2, DA5	DA3, DA6
Voltage	12 V (±20%)	24 V (±20%)
Direction of rotation Working pressure in		
counter-clockwise B	de-energized	de-energized
clockwise A	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum active current required	1.32 A	0.67 A
Duty cycle	100%	100%
Type of protection: see connector version	n page 47	

Electric override

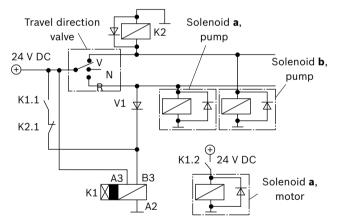
Technical data, solenoid b with ø37	DA2, DA5	DA3, DA6
Voltage	12 V (±20%)	24 V (±20%)
No override	de-energized	de-energized
Position $V_{g max}$	energized	energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum active current required	1.32 A	0.67 A
Duty cycle	100%	100%
Type of protection: see connector versi	on page 47	

▼ Circuit diagram DA2, DA3, DA5, DA6, size 28

Electric travel direction valve (for DA, HA.R)

Application in travel drives in closed circuits. The travel direction valve of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e.g. A4VG with DA control valve).

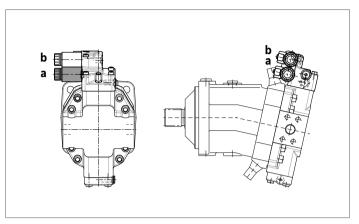
If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle weight and current travel speed.

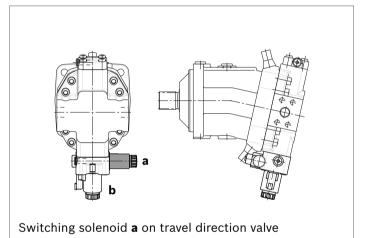

When the travel direction valve, which must be logically coordinated with the pump control, of the pump (e.g. 4/3-way directional valve of the DA-control) is switched to

- the neutral position, the electrical circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- ▶ Reversing,

the electrical circuitry causes the travel direction valve of the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

As a result, jerky deceleration or braking is prevented in both cases.

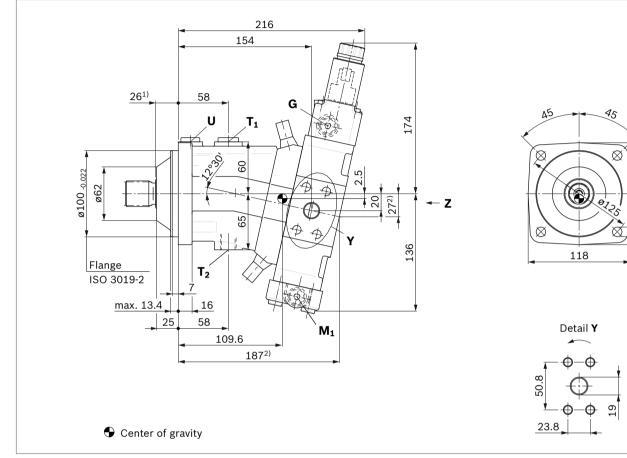

▼ Circuit diagram, electric travel direction valve


Notice

The shown diodes and relays are not included in the scope of delivery of the motor.

▼ Control, DA2, DA3, DA5, DA6

▼ Control, HA1R., HA2R.


[18

ø11

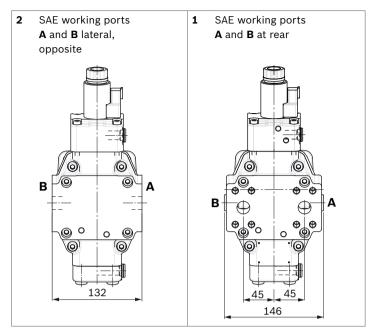
Dimensions, sizes 28

EP1, EP2 - Proportional control, electric

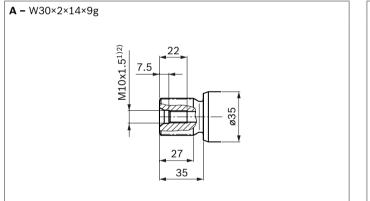
Port plate 2 – SAE working ports **A** and **B** lateral, opposing

Ports		Standard	Size ³⁾	p_{\max} [bar] $^{4)}$	State ⁸⁾
А, В	Working port	SAE J518 ⁵⁾	3/4 in	450	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	450	Х
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	Х
U	Bearing flushing	DIN 3852 ⁷⁾	M16 × 1.5; 12 deep	3	Х
x	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA1, DA4)	DIN 2353-CL	8B-ST	40	0
X ₁	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	40	0
X ₃	Pilot signal (DA2, DA3, DA5, DA6)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	40	Х
M_1	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	450	Х

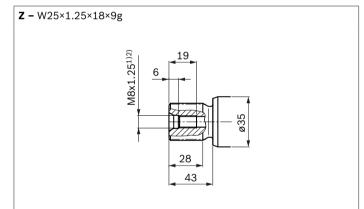
1) To shaft collar


- 2) Port plate 1 SAE working ports **A** and **B** at rear
- 3) For notes on tightening torques, see the instruction manual
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
- $_{6)}$ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 52).

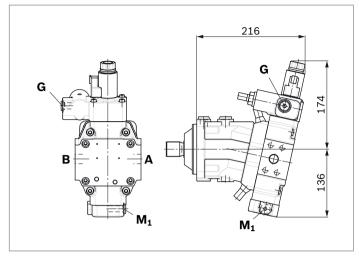
 $\ensuremath{\scriptstyle 7}\xspace$) The countersink can be deeper than as specified in the standard.


8) O = Must be connected (plugged when delivered)

X = Plugged (in normal operation)

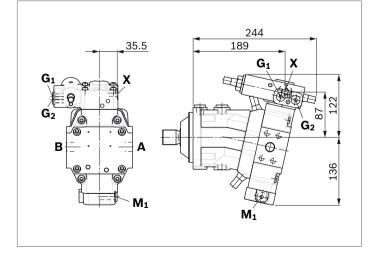

- 32 **A6VM Series 63** | Axial piston variable motor Dimensions, sizes 28
- ▼ Location of the working ports on the port plates (view Z)

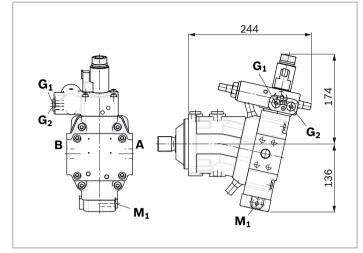
▼ Splined shaft DIN 5480

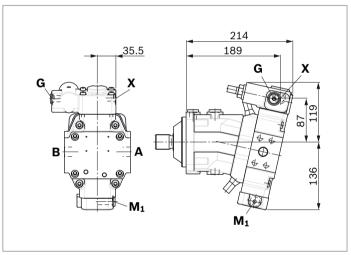

Splined shaft DIN 5480

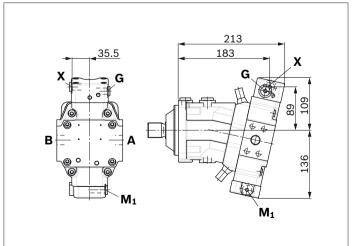

1) For notes on tightening torques, see the instruction manual

2) Center bore according to DIN 332 (thread according to DIN 13)

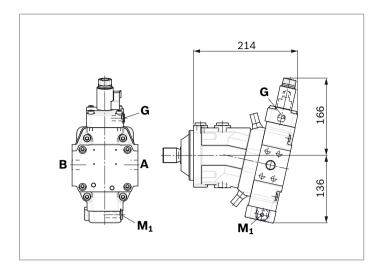

▼ **EP.D** – Proportional control, electric, with pressure control fixed setting


▼ HD1, HD2 – Proportional control, hydraulic

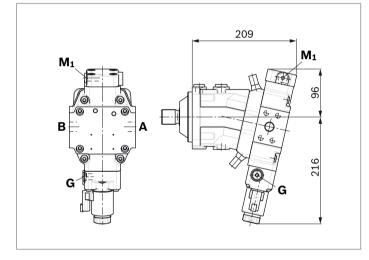

 HD.E – Proportional control, hydraulic, with pressure control hydraulic override, two-point


▼ **EP.E** – Proportional control, electric, with pressure control hydraulic override, two-point

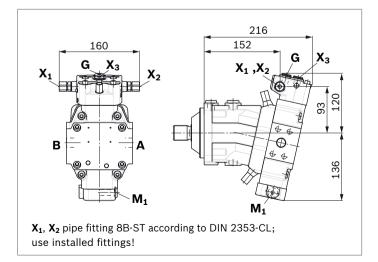
 HD.D – Proportional control, hydraulic, with pressure control fixed setting

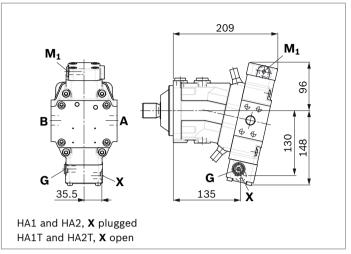


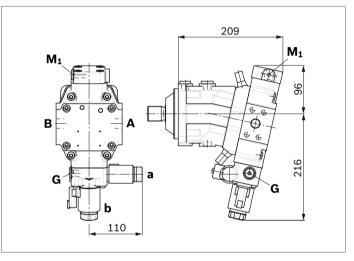
▼ HZ1 – Two-point control, hydraulic

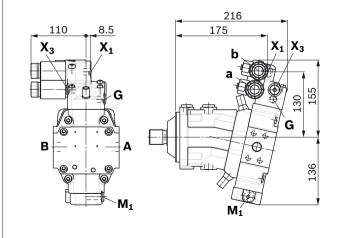


34 **A6VM Series 63** | Axial piston variable motor Dimensions, sizes 28


▼ EZ1, EZ2 – Two-point control, electric

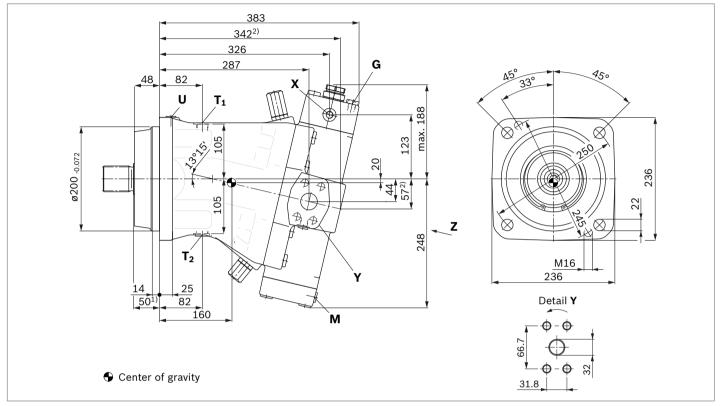

▼ HA1U1, HA2U2 – Automatic high-pressure related control, with electric override, two-point


 DA1, DA4 – Automatic speed related control, with hydraulic travel direction valve


 HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override, hydraulic remote control, proportional

▼ HA1R1, HA2R2 – Automatic high-pressure related control, with electric override and electric travel direction valve

▼ DA2, DA3, DA5, DA6 – Automatic speed related control, with electric travel direction valve and electric V_{g max}-circuit



Dimensions, sizes 250

HD1, HD2 – Proportional control, hydraulic

HZ – Two-point control, hydraulic

Port plate 2 - SAE working ports **A** and **B** lateral, opposing

Ports		Standard	Size ³⁾	$p_{\sf max}$ [bar] $^{4)}$	State ⁸⁾
А, В	Working port	SAE J518 ⁵⁾	1 1/4 in	400	0
	Fastening thread A/B	DIN 13	M14 × 2; 19 deep		
A ₁ , B ₁	Additional working port for plate 15 fastening thread A_1/B_1	SAE J518 ⁵⁾	1 1/4 in	400	0
		DIN 13	M14 × 2; 19 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M22 × 1.5; 14 deep	3	X ⁶⁾
T ₂	Drain port	DIN 3852 ⁷⁾	M22 × 1.5; 14 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
Р	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
$\mathbf{M}_{A}, \mathbf{M}_{B}$	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
M _{St}	Pilot pressure measurement	DIN 38527)	M14 × 1.5; 12 deep	400	Х

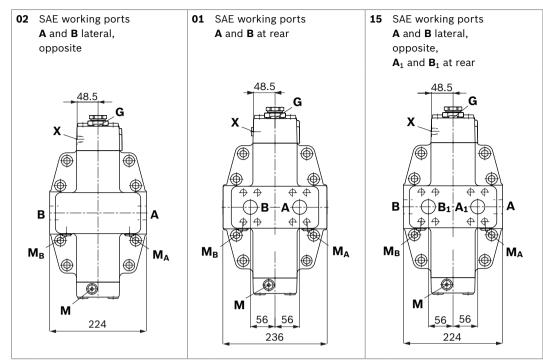
1) To shaft collar

2) Port plate 1/15 – SAE working ports **A** and **B** at rear

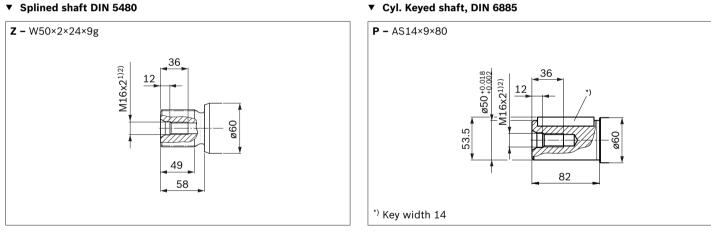
3) For notes on tightening torques, see the instruction manual

4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings. 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 52).

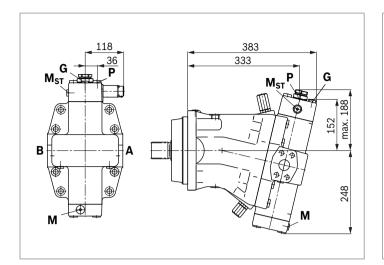

8) O = Must be connected (plugged when delivered)

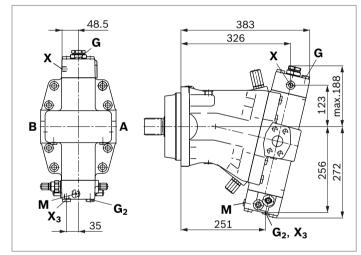
X = Plugged (in normal operation)


⁷⁾ The countersink can be deeper than as specified in the standard.

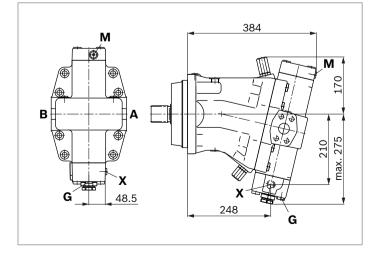
36 A6VM Series 63 | Axial piston variable motor Dimensions, sizes 250

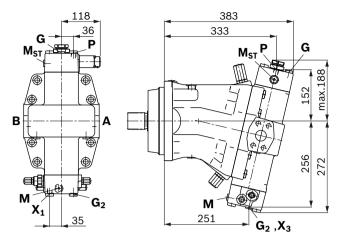
▼ Location of the working ports on the port plates (view Z)

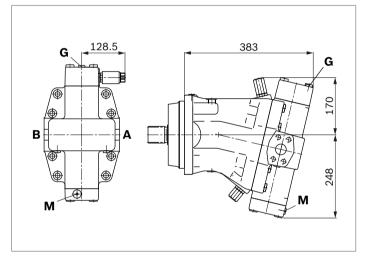

▼ Splined shaft DIN 5480

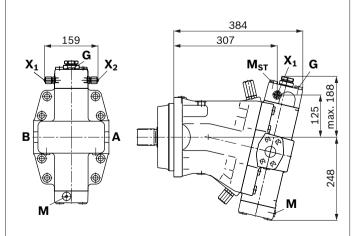

2) Center bore according to DIN 332 (thread according to DIN 13)

¹⁾ For notes on tightening torques, see the instruction manual


▼ EP1, EP2 - Proportional control, electric

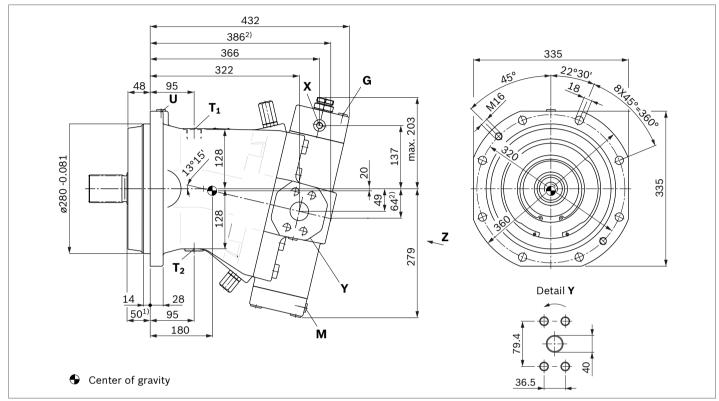

 HD.D, HD.G – Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional


▼ **EP.D, EP.G** – Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 – Two-point control, electric

 DA – Automatic speed related control, with hydraulic travel direction valve



Dimensions, sizes 355

HD1, HD2 - Proportional control, hydraulic

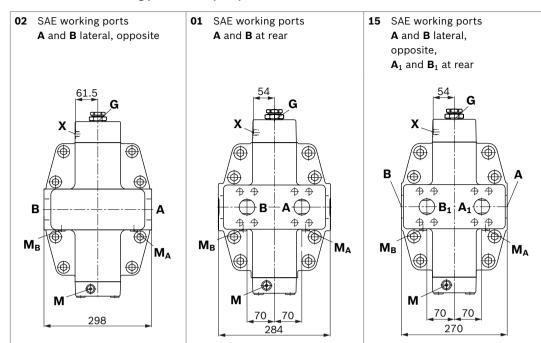
HZ – Two-point control, hydraulic

Port plate 2 – SAE working ports $\boldsymbol{\mathsf{A}}$ and $\boldsymbol{\mathsf{B}}$ lateral, opposite

Ports		Standard	Size ³⁾	p_{\max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J5185)	1 1/2 in	400	0
	Fastening thread A/B	DIN 13	M16 × 2; 24 deep		
Α ₁ , Β ₁	Additional working port for plate 15	SAE J518 ⁵⁾	1 1/2 in	400	0
	fastening thread A ₁ /B ₁	DIN 13	M16 × 2; 24 deep		
1	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	X ⁶⁾
2	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	O ⁶⁾
à	Synchronous control	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
a 2	2nd pressure setting (HD.D, EP.D)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
•	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
J	Bearing flushing	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	Х
(Pilot signal (HD, HZ, HA1T/HA2T)	DIN 38527)	M14 × 1.5; 12 deep	100	0
(Pilot signal (HA1, HA2)	DIN 38527)	M14 × 1.5; 12 deep	3	Х
(1, X 2	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
(3	Pilot signal (HD.G, EP.G)	DIN 38527)	M14 × 1.5; 12 deep	400	0
л	Stroking chamber measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
Л _А , М _В	Pressure measurement A/B	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х
A _{ST}	Pilot pressure measurement	DIN 38527)	M14 × 1.5; 12 deep	400	Х
	· · · · · · · · · · · · · · · · · · ·		· · ·		

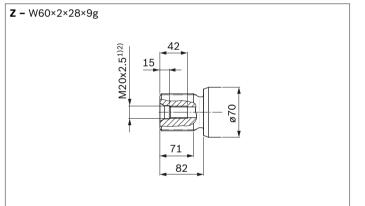
1) To shaft collar

2) Port plate 1/15 - SAE working ports A and B

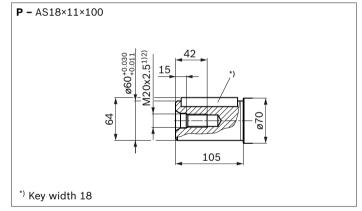

3) For notes on tightening torques, see the instruction manual

4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings. 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard

 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 52).


7) The countersink can be deeper than as specified in the standard.

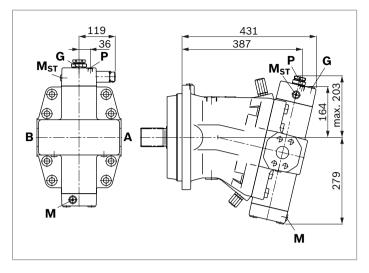
8) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)



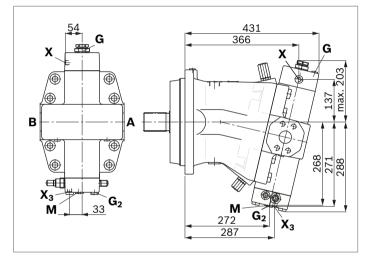
▼ Location of the working ports on the port plates (view Z)

▼ Splined shaft DIN 5480

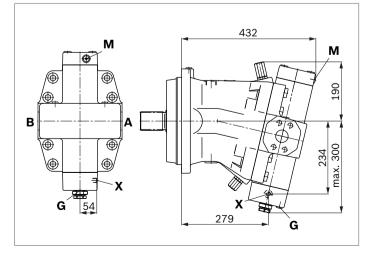
▼ Cyl. Keyed shaft, DIN 6885

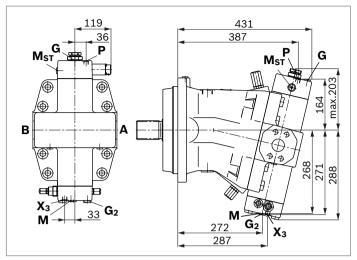


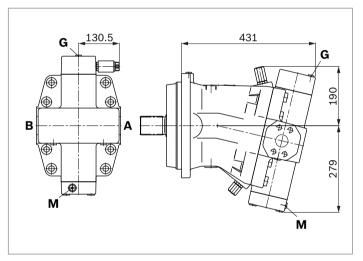
¹⁾ For notes on tightening torques, see the instruction manual

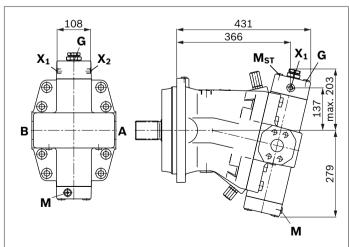

²⁾ Center bore according to DIN 332 (thread according to DIN 13)

40 **A6VM Series 63** | Axial piston variable motor Dimensions, sizes 355


▼ EP1, EP2 - Proportional control, electric

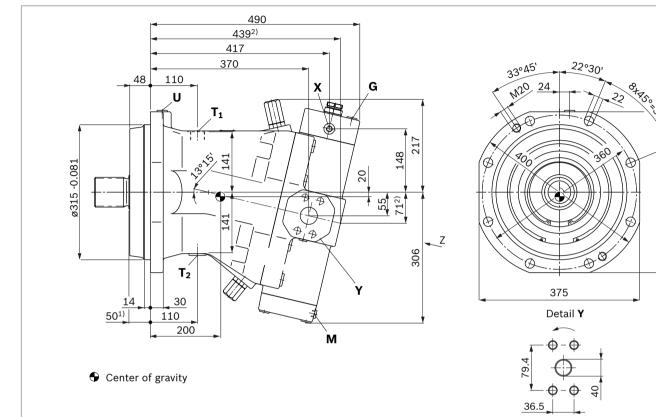

 HD.D, HD.G – Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional


 EP.D, EP.G – Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 - Two-point control, electric

 DA – Automatic speed related control, with hydraulic travel direction valve


375

Dimensions, sizes 500

HD1, HD2 – Proportional control, hydraulic

HZ – Two-point control, hydraulic

Port plate 2 - SAE working ports **A** and **B** lateral, opposite

Ports		Standard	Size ³⁾	$p_{\sf max}$ [bar] $^{4)}$	State ⁸⁾
А, В	Working port	SAE J518 ⁵⁾	1 1/2 in	400	0
	Fastening thread A/B	DIN 13	M16 × 2; 24 deep		
A ₁ , B ₁	Additional working port for plate 15	SAE J518 ⁵⁾	1 1/2 in	400	0
	fastening thread A ₁ /B ₁	DIN 13	M16 × 2; 24 deep		
T ₁	Drain port	DIN 3852 ⁷⁾	M33 × 2; 18 deep	3	X ⁶⁾
T ₂	Drain port	DIN 38527)	M33 × 2; 18 deep	3	O ⁶⁾
G	Synchronous control	DIN 38527)	M18 × 1.5; 12 deep	400	Х
G ₂	2nd pressure setting (HD.D, EP.D)	DIN 38527)	M18 × 1.5; 12 deep	400	Х
Р	Pilot oil supply (EP)	DIN 38527)	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 38527)	M14 × 1.5; 12 deep	3	Х
X ₁ , X ₂	Pilot signal (DA)	DIN 2353-CL	8B-ST	40	0
X ₃	Pilot signal (HD.G, EP.G)	DIN 38527)	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 38527)	M14 × 1.5; 12 deep	400	Х
$\mathbf{M}_{\mathrm{A}}, \mathbf{M}_{\mathrm{B}}$	Pressure measurement A/B	DIN 38527)	M14 × 1.5; 12 deep	400	Х
M _{St}	Pilot pressure measurement	DIN 38527)	M14 × 1.5; 12 deep	400	Х

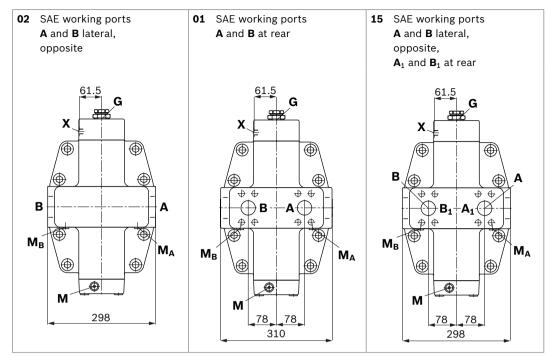
1) To shaft collar

2) Port plate 1/15 – SAE working ports \boldsymbol{A} and \boldsymbol{B} at rear

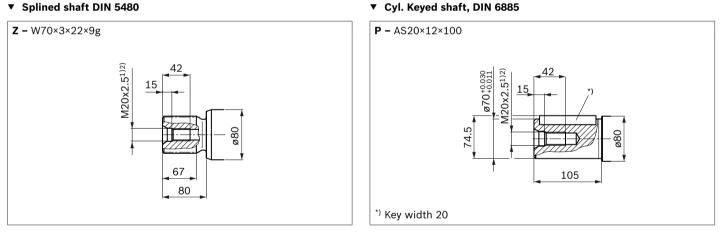
3) For notes on tightening torques, see the instruction manual

 Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings. 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard
 a) Depending on installation position T or T must be connected

 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 52).

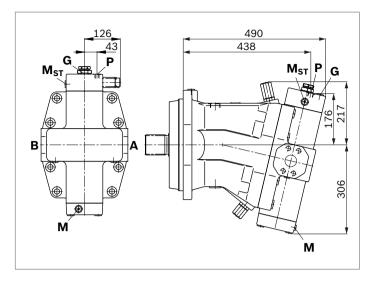

- 7) The countersink can be deeper than as specified in the standard.
- 8) O = Must be connected (plugged when delivered)

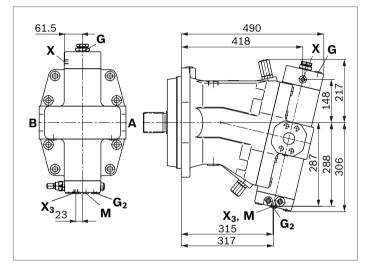
Europe | RE-E 91604/05.2016, Bosch Rexroth AG


X = Plugged (in normal operation)

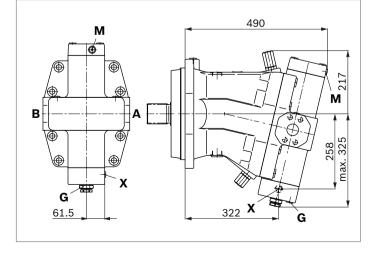
42 A6VM Series 63 | Axial piston variable motor Dimensions, sizes 500

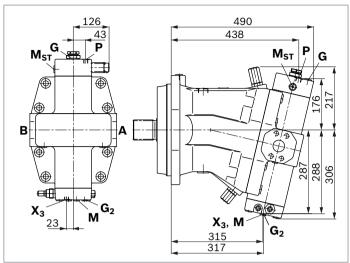
▼ Location of the working ports on the port plates (view Z)

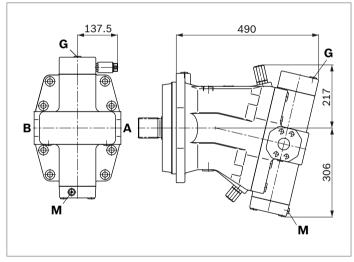

▼ Splined shaft DIN 5480

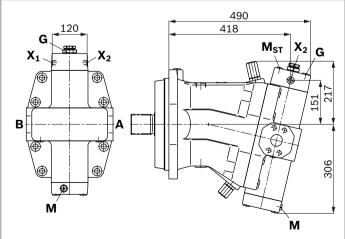

2) Center bore according to DIN 332 (thread according to DIN 13)

¹⁾ For notes on tightening torques, see the instruction manual


▼ EP1, EP2 - Proportional control, electric

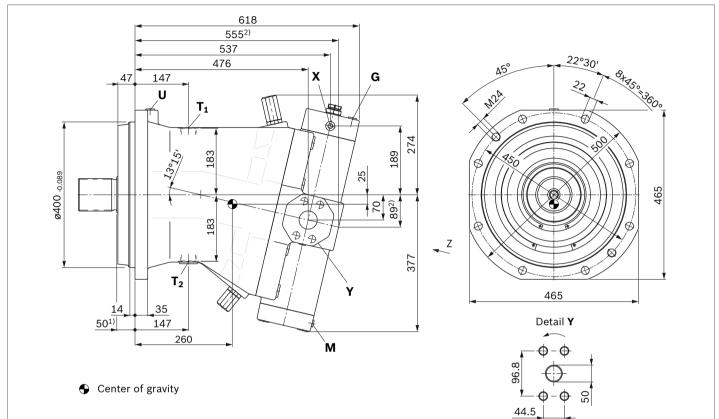

 HD.D, HD.G – Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override, hydraulic remote control, proportional


▼ **EP.D, EP.G** – Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 – Two-point control, electric

 DA – Automatic speed related control, with hydraulic travel direction valve



Dimensions, sizes 1000

HD1, HD2 - Proportional control, hydraulic

HZ – Two-point control, hydraulic

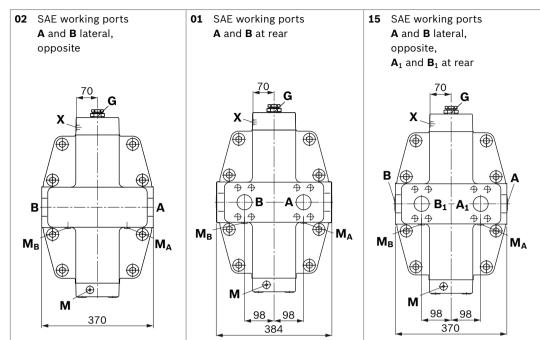
Port plate 2 – SAE working ports $\boldsymbol{\mathsf{A}}$ and $\boldsymbol{\mathsf{B}}$ lateral, opposite

Ports		Standard	Size ³⁾	$p_{\sf max}$ [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J518 ⁵⁾	2 in	400	0
	Fastening thread A/B	DIN 13	M20 × 2.5; 24 deep		
A ₁ , B ₁	Additional working port for plate 15	SAE J518 ⁵⁾	2 in	400	0
	fastening thread A ₁ /B ₁	DIN 13	M20 × 2.5; 24 deep		
T 1	Drain port	DIN 3852 ⁷⁾	M42 × 2; 20 deep	3	X ₆)
T ₂	Drain port	DIN 3852 ⁷⁾	M42 × 2; 20 deep	3	O ⁶⁾
G	Synchronous control	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	Х
G ₂	2nd pressure setting (HD.E, EP.E)	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	400	Х
Р	Pilot oil supply (EP)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
U	Bearing flushing	DIN 3852 ⁷⁾	M18 × 1.5; 12 deep	3	Х
Х	Pilot signal (HD, HZ, HA1T/HA2T)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	100	0
Х	Pilot signal (HA1, HA2)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	3	Х
X ₃	Pilot signal (HD.G, EP.G)	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	0
М	Stroking chamber measurement	DIN 38527)	M14 × 1.5; 12 deep	400	Х
M _A , M _B	Pressure measurement A/B	DIN 38527)	M14 × 1.5; 12 deep	400	Х
M _{St}	Pilot pressure measurement	DIN 3852 ⁷⁾	M14 × 1.5; 12 deep	400	Х

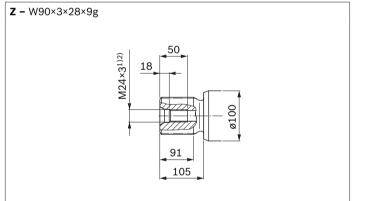
1) To shaft collar

2) Port plate 1/15 – SAE working ports ${\bm A}$ and ${\bm B}$ at rear

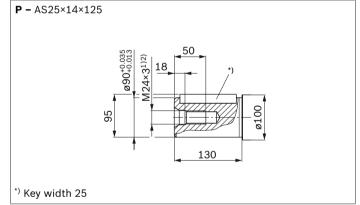
3) For notes on tightening torques, see the instruction manual


4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings. 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from the standard

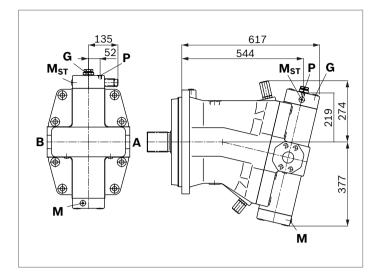
 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 52).

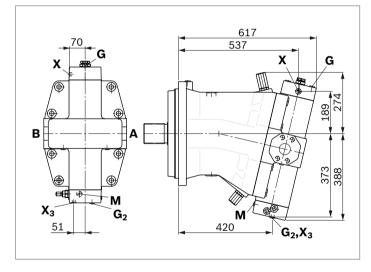

7) The countersink can be deeper than as specified in the standard.

8) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

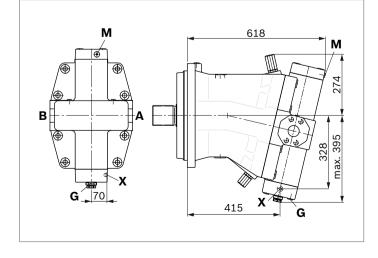

▼ Location of the working ports on the port plates (view Z)

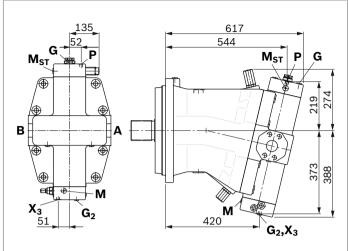
▼ Splined shaft DIN 5480

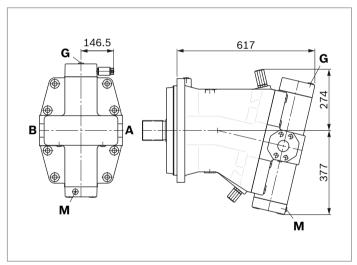

▼ Cyl. Keyed shaft, DIN 6885


¹⁾ For notes on tightening torques, see the instruction manual

²⁾ Center bore according to DIN 332 (thread according to DIN 13)


- 46 **A6VM Series 63** | Axial piston variable motor Dimensions, sizes 1000
- ▼ EP1, EP2 Proportional control, electric


 HD.D, HD.G – Proportional control hydraulic with pressure control fixed setting; remote controlled (HD.G)


▼ HA1, HA2 / HA1T, HA2T – Automatic high-pressure related control, with override hydraulic remote control, proportional

▼ **EP.D, EP.G** – Proportional control electric, with pressure control fixed setting; remote controlled (EP.G)

▼ EZ1, EZ2 – Two-point control, electric

Connector for solenoids

DEUTSCH DT04-2P-EP04

Size 28

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection ensues with an installed mating connector:

- ▶ IP67 (DIN/EN 60529) and
- ▶ IP69K (DIN 40050-9)

Switching symbol

Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Notice

- If necessary, you can change the position of the connector by turning the solenoid.
- The procedure is defined in the instruction manual.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400 Sizes 250 to 1000

Without bidirectional suppressor diode Type of protection:

▶ IP65 (DIN/EN 60529)

The seal ring in the cable fitting is suitable for lines of diameter 4.5 mm to 10 mm.

The mating connector is included in the scope of delivery.

Flushing and boost-pressure valve

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. In the closed circuit, the removed hydraulic fluid must be replaced by cooled hydraulic fluid supplied by the boost pump.

The valve is mounted on the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve (observe when setting the primary valve)

sizes 28, 250 to 1000, fixed setting 16 bar

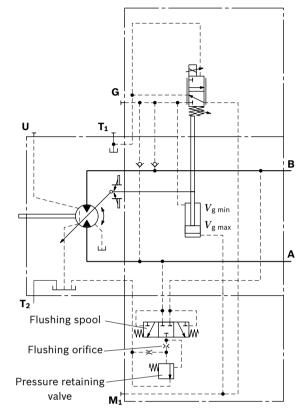
Switching pressure of flushing spool Δp

- ▶ size 28, 8±1 bar
- ▶ sizes 250 to 1000, 17.5±1.5 bar

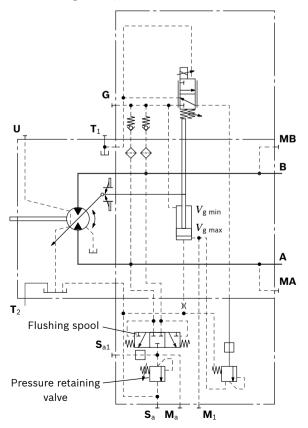
Flushing flow q_v

Orifices can be used to adjust the flushing flows as required. The following parameters are based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 25$ bar and v = 10 mm²/s

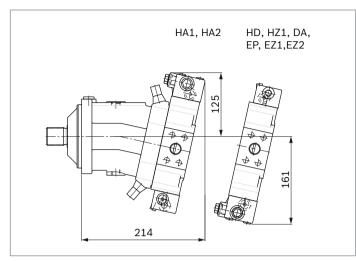
(p_{ND} = low pressure, p_{G} = case pressure)

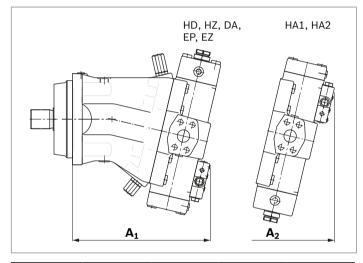

Flushing valve for size 28

Material number of orifice	ø [mm]	q_{v} [l/min]
R909651766	1.2	3.5
R909419695	1.4	5


Flushing valve for sizes 250 to 1000

Material number of orifice	ø [mm]	q_{v} [l/min]
R909419697	2.0	10
R910928643	2.8	16

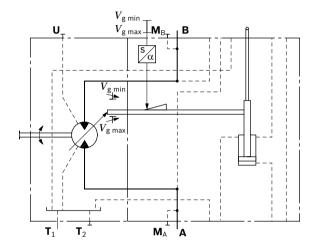


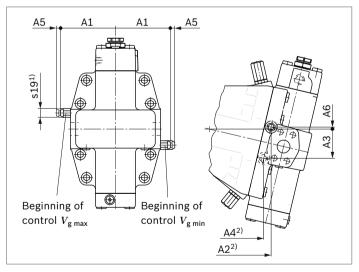

▼ Circuit diagram EP, sizes 250 to 1000

▼ Dimensions, size 28

▼ Dimensions, sizes 250 to 1000

A1	A2	
357	402	
397	446	
440	504	
552	629	
	357 397 440	357 402 397 446 440 504


Swivel angle indicator


Optical (V)

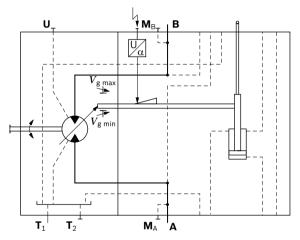
The swivel position is indicated by a pin on the side of the port plate. The length of pin protruding depends on the position of the lens plate.

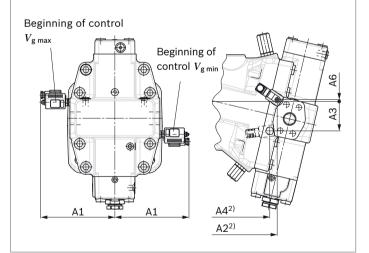
If the pin is flush with the port plate, the motor is at the beginning of control. At maximum swivel, the pin length is 8 mm (visible after removing the cap nut).

▼ Example: Beginning of control at V_{g max}

NG	A1	A2 ²⁾	A3	A4	A5 ³⁾	A6	
250	136.5	256	73	238	11	5	
355	159.5	288	84	266	11	8	
500	172.5	331	89	309	11	3	
1000	208.5	430	114	402	11	3	

Electric (E)


The motor position is detected by an inductive position transducer. This converts the travel of the control device into an electric signal.


This signal is used to forward the swivel position to an electric control unit.

Inductive position transducer

Type of protection:

- ▶ IP65 (DIN/EN 60529)
- ▼ Example: Beginning of control at V_{g max}

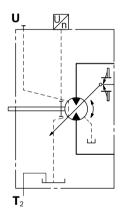
NG	A1	A2 ²⁾	A3	A4	A6	
250	185	256	73	238	5	
355	208	288	84	266	8	
500	221	331	89	309	3	
1000	257	430	114	402	3	

1) Width across flats

2) Dimension to mounting flange

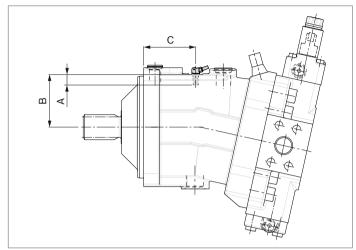
3) Required clearance for removal of cap nut

Speed sensor

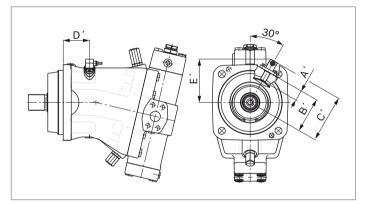

Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group. A signal proportional to motor rotational speed can be generated with the DSA/DSM or HDD speed sensor mounted. The DSA/DSM sensor registers the rotational speed and direction of rotation.

Type code, technical data, dimensions and parameters for the connector, plus safety instructions about the sensor can be found in the relevant data sheet 95132 – DSM, 95133 – DSA or 95135 – HDD.

The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VM variable motor complete with mounted sensor.


Circuit diagram

Size 28



Dimensions

Version "H" with HDD sensor (sizes 250 to 500)

NG			28	250	355	500
Numbe	Number of teeth		40	78	78	90
DSA	А	Insertion depth (tolerance -0.25)	18.4	1)	1)	1)
	В	Contact surface	61	1)	1)	1)
	С		57.2	1)	1)	1)
HDD	Α'	Insertion depth (tolerance ±0.1)	-	32.5	32.5	32.5
	В'	Contact surface	_	110.5	122.5	132.5
	C'		-	149	161	171
	D'		-	82	93	113
	E'		-	135	145	154

1) On request

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions. If this is not possible, separate drain lines must be laid.

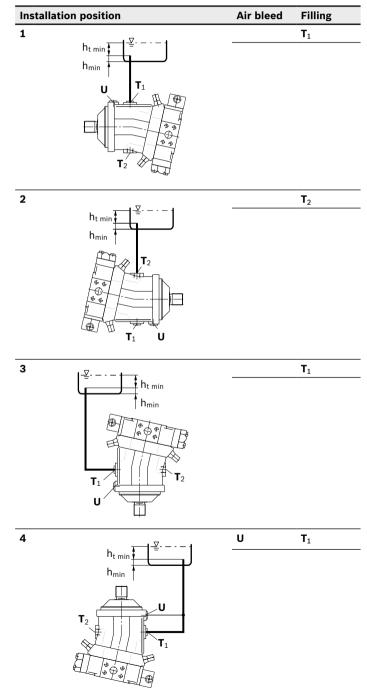
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the control characteristic can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.

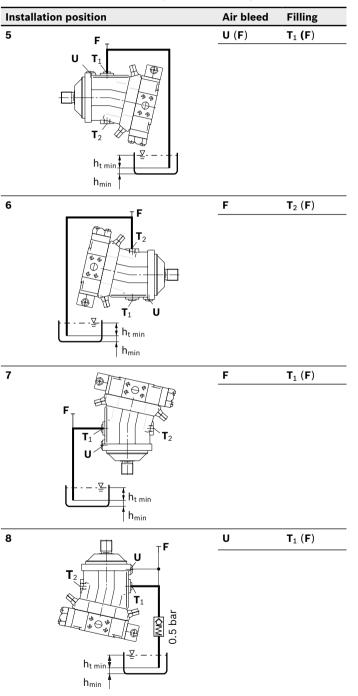
Key	
F	Filling / air bleeding
U	Bearing flushing / air bleed port
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)


Installation position

See the following examples 1 to 8.

Further installation positions are available upon request. Recommended installation position: **1** and **2**

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir and below the minimum fluid level of the reservoir.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position 8 (drive shaft upward):

A check valve in the reservoir line (cracking pressure 0.5 bar) can prevent draining of the housing area.

Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier. 54 **A6VM Series 63** | Axial piston variable motor Project planning notes

Project planning notes

- The motor A6VM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- Before finalizing your design, please request a binding installation drawing.
- The specified data and notes contained herein must be observed.
- ► For safety reasons, controls with beginning of control at V_{g min} (e.g., HA) are not permissible for winch drives (e.g. anchor winches)!
- Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- ► Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.

Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.

Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.

- Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Moving parts in control equipment (e.g. valve spools) can, under certain circumstances get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk.

The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are properly implemented.

Moving parts in high-pressure relief valves may in certain circumstances become stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of the load holding function in lifting winches. The machine/system manufacturer must check whether additional measures are required on the machine for the

additional measures are required on the machine for the relevant application in order to keep the load in a safe position and ensure they are properly implemented.

When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g., if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.